Beata M SzydÅ,owska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870656/publications.pdf

Version: 2024-02-01

21 papers 1,214 citations

15 h-index 20 g-index

22 all docs 22 docs citations

times ranked

22

2054 citing authors

#	Article	IF	Citations
1	Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva. 2D Materials, 2022, 9, 035016.	2.0	24
2	Allâ€Printed Ultrahighâ€Responsivity MoS ₂ Nanosheet Photodetectors Enabled by Megasonic Exfoliation. Advanced Materials, 2022, 34, .	11.1	25
3	Titelbild: Siteâ€Selective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile (Angew. Chem. 33/2020). Angewandte Chemie, 2020, 132, 13769-13769.	1.6	O
4	Siteâ€Selective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angewandte Chemie, 2020, 132, 13889-13896.	1.6	7
5	Preparation of WS2–PMMA composite films for optical applications. Journal of Materials Chemistry C, 2020, 8, 10805-10815.	2.7	10
6	Effect of Surfactant Choice and Concentration on the Dimensions and Yield of Liquid-Phase-Exfoliated Nanosheets. Chemistry of Materials, 2020, 32, 2852-2862.	3.2	47
7	Siteâ€Selective Oxidation of Monolayered Liquidâ€Exfoliated WS ₂ by Shielding the Basal Plane through Adsorption of a Facial Amphiphile. Angewandte Chemie - International Edition, 2020, 59, 13785-13792.	7.2	7
8	Spectroscopic thickness and quality metrics for PtSe ₂ layers produced by top-down and bottom-up techniques. 2D Materials, 2020, 7, 045027.	2.0	21
9	Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano, 2019, 13, 7050-7061.	7.3	123
10	Liquid phase exfoliation of MoO $<$ sub $>2sub> nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.$	2.2	35
11	Liquid Exfoliated Co(OH) ₂ Nanosheets as Lowâ€Cost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
12	Non-resonant light scattering in dispersions of 2D nanosheets. Nature Communications, 2018, 9, 4553.	5.8	51
13	Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments. Journal of Physical Chemistry B, 2018, 122, 11535-11545.	1.2	7
14	Size-Dependent Nonlinear Optical Response of Black Phosphorus Liquid Phase Exfoliated Nanosheets in Nanosecond Regime. ACS Photonics, 2018, 5, 3608-3612.	3.2	31
15	Quantifying the Role of Nanotubes in Nano:Nano Composite Supercapacitor Electrodes. Advanced Energy Materials, 2018, 8, 1702364.	10.2	33
16	Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Materials, 2017, 4, 025054.	2.0	39
17	Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 μm Wavelength Region. Laser and Photonics Reviews, 2017, 11, 1700166.	4.4	38
18	Influence of Graphene Oxide/Ag Nanoparticle Composites on the Fluorescence Properties of Organic Dyes. Journal of Nanoscience and Nanotechnology, 2017, 17, 8901-8911.	0.9	5

#	Article	IF	CITATIONS
19	Preparation of Liquid-exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. Journal of Visualized Experiments, 2016, , .	0.2	23
20	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. ACS Nano, 2016, 10, 6923-6932.	7. 3	231
21	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano, 2016, 10, 1589-1601.	7.3	365