Henryk Flachowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870245/publications.pdf

Version: 2024-02-01

126708 153 3,348 33 citations h-index papers

51 g-index 168 168 168 2475 docs citations citing authors all docs times ranked

182168

#	Article	IF	Citations
1	Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus�×domestica Borkh.). Plant Breeding, 2007, 126, 137-145.	1.0	150
2	Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 2010, 232, 1309-1324.	1.6	144
3	Application of a high-speed breeding technology to apple (Malusâ€f×â€fdomestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist, 2011, 192, 364-377.	3.5	141
4	The development of a cisgenic apple plant. Journal of Biotechnology, 2011, 154, 304-311.	1.9	131
5	A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding, 2009, 128, 217-226.	1.0	130
6	Strong evidence for a fire blight resistance gene of <i>Malus robusta</i> located on linkage group 3. Plant Breeding, 2007, 126, 470-475.	1.0	124
7	Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta, 2007, 226, 1243-1254.	1.6	92
8	The MdTFL1 gene of apple (Malus x domestica Borkh.) reduces vegetative growth and generation time. Tree Physiology, 2012, 32, 1288-1301.	1.4	91
9	Geneâ€forâ€gene relationship in the host–pathogen system <i><scp>M</scp>alusÂ</i> ×Â <i>robusta</i> 5– <i><scp>E</scp>rwinia amylovora</i> . New Phytologist, 2013, 197, 1262-1275.	3.5	88
10	Development of the First Cisgenic Apple with Increased Resistance to Fire Blight. PLoS ONE, 2015, 10, e0143980.	1.1	71
11	Engineering fire blight resistance into the apple cultivar †Gala†using the <i><scp>FB</scp>_<scp>MR</scp>5</i> <scp>CC</scp> â€ <scp>NBS</scp> â€ <scp>LRR</scp> resistance gene of <i>Malus</i> À×Â <i>robusta</i> >5. Plant Biotechnology Journal, 2014, 12, 728-733.	4.1	70
12	Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta, 2009, 229, 681-692.	1.6	61
13	Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiology, 2008, 28, 1459-1466.	1.4	60
14	Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestica cv. â€~Holsteiner Cox' and Pyrus communis cv. â€~Conference'. Phytochemistry 2012, 77, 179-185.	/,1.4	57
15	Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (<i>Fragaria</i> A×Â <i>ananassa</i>). New Phytologist, 2014, 201, 440-451.	3.5	57
16	The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell, Tissue and Organ Culture, 2013, 115, 127-137.	1.2	52
17	<i><scp>TERMINAL FLOWER</scp>1</i> is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (<i>FragariaÂ</i> ×Â <i>ananassa</i> Duch.). Plant Biotechnology Journal, 2016, 14, 1852-1861.	4.1	52
18	Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta, 2010, 231, 251-263.	1.6	50

#	Article	IF	CITATIONS
19	Molecular characterization of cisgenic lines of apple â€~Gala' carrying the <i>Rvi6</i> scab resistance gene. Plant Biotechnology Journal, 2014, 12, 2-9.	4.1	50
20	Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theoretical and Applied Genetics, 2003, 107, 102-109.	1.8	47
21	Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta, 2010, 231, 623-635.	1.6	46
22	Application of AFLP for the detection of sex-specific markers in hemp. Plant Breeding, 2001, 120, 305-309.	1.0	44
23	Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Molecular Breeding, 2015, 35, 1.	1.0	44
24	Differential Expression of Biphenyl Synthase Gene Family Members in Fire-Blight-Infected Apple â€~Holsteiner Cox'. Plant Physiology, 2012, 158, 864-875.	2.3	42
25	Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Science, 2010, 179, 60-67.	1.7	41
26	Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (<i>Fragaria</i> ×) Tj ETQq0 0	0 rg <u>B</u> Ţ /Ov	erlock 10 Tf 5
27	Use of a transgenic early flowering approach in apple (MalusÂ×Âdomestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Molecular Breeding, 2012, 30, 857-874.	1.0	39
28	Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins. Plant Physiology, 2015, 168, 428-442.	2.3	39
29	Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7Âyears of applying the early flowering approach. Planta, 2018, 247, 1475-1488.	1.6	38
30	Evaluation of Malus genetic resources for tolerance to apple replant disease (ARD). Scientia Horticulturae, 2019, 256, 108517.	1.7	38
31	Malus Hosts–Erwinia amylovora Interactions: Strain Pathogenicity and Resistance Mechanisms. Frontiers in Plant Science, 2019, 10, 551.	1.7	38
32	The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. Frontiers in Plant Science, 2020, 11, 1003.	1.7	38
33	Determination of selfâ€incompatible genotypes in sweet cherry (<i>Prunus avium L.</i>) accessions and cultivars of the German Fruit Gene Bank and from private collections. Plant Breeding, 2007, 126, 533-540.	1.0	37
34	Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell, Tissue and Organ Culture, 2016, 124, 471-481.	1.2	37
35	CONFIRMATION OF THE FIRE BLIGHT QTL OF MALUS × ROBUSTA 5 ON LINKAGE GROUP 3. Acta Horticulturae, 2008, , 297-303.	0.1	36
36	Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta, 2016, 243, 1213-1224.	1.6	35

#	Article	IF	CITATIONS
37	Heat-shock-mediated elimination of the nptll marker gene in transgenic apple (Malus×domestica) Tj ETQq1	1 0.784314 r	gBT ₃₂ /Overlo
38	Silencing of flavanone-3-hydroxylase in apple (MalusÂ×Âdomestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiology and Biochemistry, 2012, 51, 18-25.	2.8	32
39	INOCULATION OF MALUS $\tilde{A}-$ ROBUSTA 5 PROGENY WITH A STRAIN BREAKING RESISTANCE TO FIRE BLIGHT REVEALS A MINOR QTL ON LG5. Acta Horticulturae, 2011, , 357-362.	0.1	31
40	QTL mapping of fire blight resistance in Malus \tilde{A} —robusta 5 after inoculation with different strains of Erwinia amylovora. Molecular Breeding, 2014, 34, 217-230.	1.0	31
41	Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electronic Journal of Biotechnology, 2008, 11, 0-0.	1.2	28
42	RNA-Mediated Gene Silencing Signals Are Not Graft Transmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp International Journal of Molecular Sciences, 2012, 13, 9992-10009.	1.8	28
43	Phytoalexin formation in fire blight-infected apple. Trees - Structure and Function, 2013, 27, 477-484.	0.9	27
44	Genes Involved in Stress Response and Especially in Phytoalexin Biosynthesis Are Upregulated in Four Malus Genotypes in Response to Apple Replant Disease. Frontiers in Plant Science, 2019, 10, 1724.	1.7	27
45	Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genetics and Genomes, 2006, 2, 186-195.	0.6	26
46	To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genetics and Genomes, $2017, 13, 1.$	0.6	26
47	Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiology Ecology, 2021, 97, .	1.3	26
48	Mapping of fire blight resistance in Malus \tilde{A} —robusta 5 flowers following artificial inoculation. BMC Plant Biology, 2019, 19, 532.	1.6	24
49	Transgenic expression of a viral EPSâ€depolymerase is potentially useful to induce fire blight resistance in apple. Annals of Applied Biology, 2008, 153, 345-355.	1.3	23
50	Identification and molecular analysis of candidate genes homologous to <i>HcrVf</i> genes for scab resistance in apple. Plant Breeding, 2009, 128, 84-91.	1.0	23
51	Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees - Structure and Function, 2012, 26, 259-271.	0.9	23
52	Assessment of phenotypic variation of Malus orientalis in the North Caucasus region. Genetic Resources and Crop Evolution, 2013, 60, 1463-1477.	0.8	23
53	Evaluation of strawberry (<i><i><i><scp>F</scp>ragaria</i><l) <i="" for="" genetic="" resistance="" resources="" to=""><scp>B</scp>otrytis cinerea</l)></i>Plant Pathology, 2015, 64, 396-405.</i>	1.2	23
54	Inoculation of <i>Malus</i> genotypes with a set of <i>Erwinia amylovora</i> strains indicates a geneâ€forâ€gene relationship between the effector gene <i>eop1</i> and both <i>Malus floribunda</i> 821 and <i>Malus</i> å€~Evereste'. Plant Pathology, 2018, 67, 938-947.	1.2	22

#	Article	IF	CITATIONS
55	Evaluation of Scab and Mildew Resistance in the Gene Bank Collection of Apples in Dresden-Pillnitz. Plants, 2021, 10, 1227.	1.6	22
56	Resistance and systemic dispersal of <i>Xanthomonas fragariae</i> in strawberry germplasm (<i>Fragaria</i> L.). Plant Pathology, 2015, 64, 71-80.	1.2	20
57	Integration of <i>Bp<scp>MADS</scp>4</i> on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnology Journal, 2015, 13, 246-258.	4.1	20
58	Sex-linked SSR markers in hemp. Plant Breeding, 2005, 124, 167-170.	1.0	19
59	Molecular and flow cytometric evaluation of pear (Pyrus L.) genetic resources of the German and Romanian national fruit collections. Genetic Resources and Crop Evolution, 2016, 63, 1023-1033.	0.8	19
60	A Single Effector Protein, AvrRpt2 _{EA} , from <i>Erwinia amylovora</i> Can Cause Fire Blight Disease Symptoms and Induces a Salicylic Acid–Dependent Defense Response. Molecular Plant-Microbe Interactions, 2018, 31, 1179-1191.	1.4	19
61	SSR fingerprinting of a German Rubus collection and pedigree based evaluation on trueness-to-type. Genetic Resources and Crop Evolution, 2017, 64, 189-203.	0.8	18
62	Introgressing blue mold resistance into elite apple germplasm by rapid cycle breeding and foreground and background DNA-informed selection. Tree Genetics and Genomes, 2020, 16, 1.	0.6	16
63	Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 2014, 544, 198-207.	1.0	15
64	Assessing gene flow in apple using a descendant of Malus sieversiivar. sieversiif. niedzwetzkyanaas an identifier for pollen dispersal. Environmental Biosafety Research, 2006, 5, 89-104.	1.1	14
65	A diallel crossing approach aimed on selection for ripening time and yield in breeding of new strawberry (Fragaria×ananassaDuch.) cultivars. Plant Breeding, 2014, 133, 115-120.	1.0	14
66	Studies on heat shock induction and transgene expression in order to optimize the Flp/FRT recombinase system in apple (MalusÂ×Âdomestica Borkh.). Plant Cell, Tissue and Organ Culture, 2013, 115, 457-467.	1.2	13
67	High crop load and low temperature delay the onset of bud initiation in apple. Scientific Reports, 2019, 9, 17986.	1.6	13
68	DEVELOPMENT OF MOLECULAR MARKERS FOR VR1, A SCAB RESISTANCE FACTOR FROM R12740-7A APPLE. Acta Horticulturae, 2004, , 171-176.	0.1	13
69	The structure of Erwinia amylovora AvrRpt2 provides insight into protein maturation and induced resistance to fire blight by Malusâ€Ã—â€robusta 5. Journal of Structural Biology, 2019, 206, 233-242.	1.3	12
70	Toward Systematic Understanding of Flower Bud Induction in Apple: A Multi-Omics Approach. Frontiers in Plant Science, 2021, 12, 604810.	1.7	12
71	Genetic Analysis and Fine Mapping of the Fire Blight Resistance Locus of Malus ×arnoldiana on Linkage Group 12 Reveal First Candidate Genes. Frontiers in Plant Science, 2021, 12, 667133.	1.7	12
72	PRELIMINARY RESULTS TO ESTABLISH AN ALTERNATIVE SELECTION SYSTEM FOR APPLE TRANSFORMATION. Acta Horticulturae, 2004, , 425-430.	0.1	11

#	Article	IF	CITATIONS
73	Heat mediated silencing of MdTFL1 genes in apple (MalusÂ×Âdomestica). Plant Cell, Tissue and Organ Culture, 2015, 123, 511-521.	1.2	10
74	RNAi-SILENCING OF MdTFL1 INDUCES EARLY FLOWERING IN APPLE. Acta Horticulturae, 2009, , 633-636.	0.1	9
7 5	Evaluation of an alternative D-amino acid/DAAO selection system for transformation in apple (Malus×domesticaBorkh.). Journal of Horticultural Science and Biotechnology, 2009, 84, 188-194.	0.9	9
76	Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genetics and Molecular Biology, 2012, 35, 466-473.	0.6	9
77	Tracing CRISPR/Cas12a Mediated Genome Editing Events in Apple Using High-Throughput Genotyping by PCR Capillary Gel Electrophoresis. International Journal of Molecular Sciences, 2021, 22, 12611.	1.8	9
78	Fruit Crops. Biotechnology in Agriculture and Forestry, 2010, , 307-348.	0.2	8
79	Note added in proof to: Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 2011, 233, 217-218.	1.6	8
80	Comprehensive characterization of plant material obtained by in vitro androgenesis in apple. Plant Cell, Tissue and Organ Culture, 2015, 122, 617-628.	1.2	8
81	SSR fingerprinting of raspberry cultivars traded in Germany clearly showed that certainty about the genotype authenticity is a prerequisite for any horticultural experiment. European Journal of Horticultural Science, 2020, 85, 79-85.	0.3	8
82	Elucidating the genetic background of the early-flowering transgenic genetic stock T1190 with a high-density SNP array. Molecular Breeding, 2019, 39, 1.	1.0	7
83	Genetic diversity and phylogenetic relationships among citrus germplasm in the Western Caucasus assessed with SSR and organelle DNA markers. Scientia Horticulturae, 2021, 288, 110355.	1.7	7
84	Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus $\tilde{A}-$ domestica Borkh. Frontiers in Plant Science, 0, 13, .	1.7	7
85	COMPARATIVE MAPPING OF FIRE BLIGHT RESISTANCE IN MALUS. Acta Horticulturae, 2014, , 47-51.	0.1	6
86	VERIFYING THE PARENTS OF THE PILLNITZER APPLE CULTIVARS. Acta Horticulturae, 2009, , 319-324.	0.1	6
87	THE SWITCH TO FLOWERING: GENES INVOLVED IN FLORAL INDUCTION OF THE APPLE CULTIVAR 'PINOVA' AND THE ROLE OF THE FLOWERING GENE MdFT. Acta Horticulturae, 2009, , 701-705.	0.1	5
88	Functional Genomics of Flowering Time in Trees. , 2012, , 39-69.		5
89	Homologs of the FB_MR5 fire blight resistance gene of Malus \tilde{A} —robusta 5 are present in other Malus wild species accessions. Tree Genetics and Genomes, 2016, 12, 1.	0.6	5
90	Mapping of the Waxy Bloom Gene in â€~Black Jewel' in a Parental Linkage Map of â€~Black Jewel' × â€~C Ample' (Rubus) Interspecific Population. Agronomy, 2020, 10, 1579.	ilen 1.3	5

#	Article	IF	CITATIONS
91	Characterization of genomic DNA sequence of the candidate gene for FB_Mfu10 associated with fire blight resistance in Malus species. BMC Research Notes, 2021, 14, 291.	0.6	5
92	IMPROVED FIRE BLIGHT RESISTANCE IN TRANSGENIC APPLE LINES BY CONSTITUTIVE OVEREXPRESSION OF THE mbr4 GENE OF MALUS BACCATA. Acta Horticulturae, 2008, , 287-291.	0.1	5
93	Obstz $ ilde{A}^{1}\!\!/\!\!4$ chtung und wissenschaftliche Grundlagen. , 2017, , .		5
94	Identification of Candidate Genes Associated With Tolerance to Apple Replant Disease by Genome-Wide Transcriptome Analysis. Frontiers in Microbiology, 2022, 13, .	1.5	5
95	BREEDING OF RESISTANT STRAWBERRY CULTIVARS FOR ORGANIC FRUIT PRODUCTION - PRELIMINARY RESULTS WITH BOTRYTIS CINEREA. Acta Horticulturae, 2013, , 87-90.	0.1	4
96	Evaluation of a MdMYB10/GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L.  Rþgen'. Plant Cell, Tissue and Organ Culture, 2017, 130, 345-356.	1.2	4
97	Evaluation of Rubus genetic resources on their resistance to cane disease. Genetic Resources and Crop Evolution, 2018, 65, 1979-1993.	0.8	4
98	Genetic diversity of pear germplasm in Bosnia and Herzegovina, as revealed by SSR markers. Zemdirbyste, 2021, 108, 71-78.	0.3	4
99	Transcriptional profile of AvrRpt2EA-mediated resistance and susceptibility response to Erwinia amylovora in apple. Scientific Reports, 2021, 11, 8685.	1.6	4
100	ANALYSIS OF TISSUE UNIFORMITY IN TRANSGENIC APPLE PLANTS. Acta Horticulturae, 2007, , 301-306.	0.1	4
101	PRELIMINARY RESULTS TO ESTABLISH THE DAAO SYSTEM AS AN ALTERNATIVE SELECTION STRATEGY ON APPLE. Acta Horticulturae, 2009, , 267-272.	0.1	4
102	FRUIT GENETIC RESOURCES MANAGEMENT: COLLECTION, CONSERVATION, EVALUATION AND UTILIZATION IN GERMANY. Acta Horticulturae, 2014, , 231-234.	0.1	4
103	Proteomic differences in apple spur buds from high and non-cropping trees during floral initiation. Journal of Proteomics, 2022, 253, 104459.	1.2	4
104	Time-Resolved Analysis of Candidate Gene Expression and Ambient Temperature During Bud Dormancy in Apple. Frontiers in Plant Science, 2021, 12, 803341.	1.7	4
105	FIRST RESULTS ON THE EFFECT OF INCREASED CHITINASE EXPRESSION IN TRANSGENIC APPLE TREES ON MYCORRHIZATION WITH GLOMUS INTRARADICES AND G. MOSSEAE. Acta Horticulturae, 2009, , 719-724.	0.1	3
106	METABOLIC ENGINEERING OF FLAVONOID BIOSYNTHESIS IN APPLE (MALUS DOMESTICA BORKH.). Acta Horticulturae, 2009, , 511-516.	0.1	3
107	FUNCTIONAL CHARACTERIZATION OF TWO ANTAGONISTIC ACTING FLOWERING GENES IN APPLE MALUS ×DOMESTICA BORKH Acta Horticulturae, 2012, , 351-356.	0.1	3
108	DEVELOPING MOLECULAR MARKERS FOR MARKER ASSISTED SELECTION OF FIRE BLIGHT RESISTANT APPLE SEEDLINGS. Acta Horticulturae, 2007, , 117-122.	0.1	3

#	Article	IF	Citations
109	IDENTIFICATION OF CULTIVABLE BACTERIA FROM IN VITRO CULTURES OF APPLE. Acta Horticulturae, 2009, , 733-738.	0.1	3
110	New strawberry genotypes tested for organic production on a Verticillium-infested site. Zahradnictvi (Prague, Czech Republic: 1992), 2014, 41, 167-174.	0.3	2
111	Evaluation of tolerance to apple replant disease (ARD) in Malus germplasm. Acta Horticulturae, 2021, , 327-334.	0.1	2
112	No Evidence of Unexpected Transgenic Insertions in T1190 – A Transgenic Apple Used in Rapid Cycle Breeding – Following Whole Genome Sequencing. Frontiers in Plant Science, 2021, 12, 715737.	1.7	2
113	Self-incompatibility of raspberry cultivars assessed by SSR markers. Scientia Horticulturae, 2021, 288, 110384.	1.7	2
114	Transgenic Fruit Crops in Europe. , 2011, , 125-145.		2
115	BPMADS4 - A MADS BOX GENE OF BIRCH INDUCES FLOWERS ON TRANSGENIC APPLE PLANTS IN VITRO. Acta Horticulturae, 2007, , 307-312.	0.1	2
116	IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF VF-LIKE CANDIDATE GENES IN CULTIVATED APPLES AND SELECTIONS FROM MALUS SIEVERSII. Acta Horticulturae, 2009, , 747-752.	0.1	2
117	CISGENIC APPROACH FOR IMPROVED DISEASE RESISTANCE IN APPLE. Acta Horticulturae, 2013, , 117-121.	0.1	2
118	Mycorrhization of transgenic apple trees with increased resistance against fungal pathogens. BMC Proceedings, $2011, 5, \ldots$	1.8	1
119	BIOTECHNOLOGICAL APPROACHES TO SHORTEN THE JUVENILE PERIOD IN FRUIT TREES. Acta Horticulturae, 2012, , 309-314.	0.1	1
120	DEVELOPMENT OF APPLE PRE-BREEDING GENOTYPES HIGHLY RESISTANT TO FIRE BLIGHT BY EARLY FLOWERING. Acta Horticulturae, 2014, , 55-64.	0.1	1
121	INVESTIGATION ON FIRE BLIGHT RESISTANCE IN THE CROSS POPULATION 'IDARED' × MALUS ×ROBUSTA 5 WITH DIFFERENT ERWINIA AMYLOVORA STRAINS. Acta Horticulturae, 2014, , 277-280.	0.1	1
122	FB-MR5 IS AN APPLE GENE PROVIDING RESISTANCE TO FIRE BLIGHT. Acta Horticulturae, 2014, , 273-276.	0.1	1
123	Generation of a cisgenic apple line of cultivar â€~Gala' with increased fire blight resistance. Acta Horticulturae, 2017, , 79-84.	0.1	1
124	Himbeere und Brombeere (Rubus spp.)., 2017,, 353-384.		1
125	TRANSCRIPTION PROFILING ON TRANSGENIC APPLE PLANTS AFTER OVER-EXPRESSION OF GENES, WHICH ARE INVOLVED IN THE FLOWER DEVELOPMENT. Acta Horticulturae, 2007, , 215-222.	0.1	1
126	SYSTEMIC ACQUIRED SILENCING OF A GUSA TRANSGENE IN APPLE. Acta Horticulturae, 2009, , 393-396.	0.1	1

#	Article	IF	CITATIONS
127	HEAT-SHOCK REGULATED EXCISION OF THE NPTII MARKER GENE IN TRANSGENIC APPLE (MALUS × DOMESTICA	ŊŢj ₁ ETQq1	1 0.78431
128	PRELIMINARY RESULTS TO ESTABLISH A SPEED-BREED PROGRAM BASED ON HEAT-INDUCED PRECOCIOUS FLOWERING OF APPLE PLANTS CONTAINING THE FLOWERING LOCUS T GENE FROM POPLAR (POPULUS) Tj ETQq	100010 rgBT	i l Overlock 1
129	Apfelbeere (Aronia melanocarpa). , 2017, , 413-418.		1
130	STUDIES ON MRNA EXPRESSION OF GENES INVOLVED IN FLORAL MERISTEM TRANSITION OF APPLE (MALUS) TJ E	ETQq000	rgBT /Overlo
131	BIPHENYL AND DIBENZOFURAN FORMATION IN FIRE BLIGHT-INFECTED MALUS DOMESTICA CULTIVARS. Acta Horticulturae, 2011, , 547-553.	0.1	O
132	GENETIC CONTROL OF FLOWER DEVELOPMENT IN APPLE AND THE UTILISATION OF TRANSGENIC EARLY FLOWERING APPLE PLANTS IN BREEDING. Acta Horticulturae, 2012, , 29-34.	0.1	0
133	BIPHENYLS AND DIBENZOFURANS - FIRE BLIGHT-INDUCED PHYTOALEXINS OF PEAR. Acta Horticulturae, 2014, , 181-185.	0.1	O
134	DIFFERENTIAL TRANSCRIPTOME ANALYSIS OF MALUS $\tilde{A}-$ ROBUSTA 5 AFTER INOCULATION WITH THE VIRULENT ERWINIA AMYLOVORA AVRRPT2EA DELETION STRAIN ZYRKD3-1 AND THE NON-VIRULENT WILD TYPE STRAIN EA1189. Acta Horticulturae, 2014, , 191-194.	0.1	0
135	An innovative approach to estimate carbon status for improved crop load management in apple. Acta Horticulturae, 2018, , 285-292.	0.1	O
136	Biphenyls and dibenzofurans are the phytoalexins of apple. Acta Horticulturae, 2019, , 259-264.	0.1	0
137	Event-specific qualitative polymerase chain reaction analysis for two T-DNA copies in genetically modified orange Petunia. Plant Cell, Tissue and Organ Culture, 2020, 142, 415-424.	1.2	O
138	Preservation of fruit genetic resources in Germany. Acta Horticulturae, 2021, , 163-170.	0.1	0
139	Detached leaf assay with respect to determine resistance of <i>Malus </i> species against premature leaf fall (<i>M. coronaria</i>). Acta Horticulturae, 2021, , 335-338.	0.1	O
140	QTL MAPPING FOR RESISTANCE TO FIRE BLIGHT USING SEVERAL ERWINIA AMYLOVORA STRAINS RESULTING IN DIFFERENT HOST-PATHOGEN INTERACTIONS. Acta Horticulturae, 2013, , 509-512.	0.1	0
141	THE "GERMAN NATIONAL FRUIT GENEBANK", A FIRST REVIEW FIVE YEARS AFTER LAUNCHING. Acta Horticulturae, 2014, , 227-230.	0.1	O
142	Süßkirsche (Prunus avium) und Sauerkirsche (Prunus cerasus). , 2017, , 247-280.		0
143	Quitte (Cydonia oblonga). , 2017, , 241-245.		0
144	Zýchtungsmethoden., 2017,, 59-85.		0

#	Article	IF	CITATIONS
145	Kulturheidelbeere und Cranberry (Vaccinium spp.). , 2017, , 385-395.		O
146	Kern- und Steinobstunterlagen. , 2017, , 429-441.		0
147	Neue Techniken der Pflanzenzüchtung. , 2017, , 105-123.		O
148	Sortenschutz und Sortenverwertung. , 2017, , 149-157.		0
149	Pflaume (Prunus domestica)., 2017,, 281-302.		O
150	Johannisbeere und Stachelbeere (Ribes spp.)., 2017,, 397-411.		0
151	Geschichte der Obstzüchtung. , 2017, , 11-27.		O
152	Apfel (Malus domestica). , 2017, , 173-209.		0
153	Elucidating the genetic mechanisms underlying tolerance to apple replant disease (ARD). Acta Horticulturae, 2021, , 49-56.	0.1	O