Adam S Hock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870224/publications.pdf Version: 2024-02-01

ADAM S HOCK

#	Article	IF	CITATIONS
1	Atomic Layer Deposition of Tin Monosulfide Thin Films. Advanced Energy Materials, 2011, 1, 1116-1125.	10.2	383
2	Propylene Hydrogenation and Propane Dehydrogenation by a Single-Site Zn ²⁺ on Silica Catalyst. ACS Catalysis, 2014, 4, 1091-1098.	5.5	230
3	Molybdenum Triamidoamine Complexes that Contain Hexa-tert-butylterphenyl, Hexamethylterphenyl, orp-Bromohexaisopropylterphenyl Substituents. An Examination of Some Catalyst Variations for the Catalytic Reduction of Dinitrogen. Journal of the American Chemical Society, 2004, 126, 6150-6163.	6.6	186
4	Selective propane dehydrogenation with single-site Coll on SiO2 by a non-redox mechanism. Journal of Catalysis, 2015, 322, 24-37.	3.1	168
5	Isolated Fe ^{II} on Silica As a Selective Propane Dehydrogenation Catalyst. ACS Catalysis, 2015, 5, 3494-3503.	5.5	144
6	Low Temperature Atomic Layer Deposition of Tin Oxide. Chemistry of Materials, 2010, 22, 4964-4973.	3.2	121
7	Dipyrrolyl Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2006, 128, 16373-16375.	6.6	105
8	Highly Active, Stable, and Selective Well-Defined Silica Supported Mo Imido Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2007, 129, 1044-1045.	6.6	92
9	Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES. Catalysis Science and Technology, 2016, 6, 6339-6353.	2.1	90
10	Single-site zinc on silica catalysts for propylene hydrogenation and propane dehydrogenation: Synthesis and reactivity evaluation using an integrated atomic layer deposition-catalysis instrument. Journal of Catalysis, 2017, 345, 170-182.	3.1	76
11	Synthesis of Molybdenum Complexes that Contain "Hybrid―Triamidoamine Ligands, [(Hexaisopropylterphenyl-NCH2CH2)2NCH2CH2N-aryl]3-, and Studies Relevant to Catalytic Reduction of Dinitrogen. Inorganic Chemistry, 2006, 45, 9185-9196.	1.9	70
12	Synthesis of N-Heterocyclic Stannylene (Sn(II)) and Germylene (Ge(II)) and a Sn(II) Amidinate and Their Application as Precursors for Atomic Layer Deposition. Chemistry of Materials, 2014, 26, 3065-3073.	3.2	69
13	Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching. ACS Nano, 2017, 11, 693-701.	7.3	55
14	The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO2. Catalysis Letters, 2017, 147, 1252-1262.	1.4	54
15	Discovery of Highly Selective Alkyne Semihydrogenation Catalysts Based on Firstâ€Row Transitionâ€Metallated Porous Organic Polymers. Angewandte Chemie - International Edition, 2014, 53, 12055-12058.	7.2	51
16	Reactions of M(N-2,6-i-Pr2C6H3)(CHR)(CH2Râ€~)2 (M = Mo, W) Complexes with Alcohols To Give Olefin Metathesis Catalysts of the Type M(N-2,6-i-Pr2C6H3)(CHR)(CH2Râ€~)(ORâ€~ â€~). Organometallics, 2006, 2 1412-1423.	5,1.1	46
17	Zirconium Modification Promotes Catalytic Activity of a Single-Site Cobalt Heterogeneous Catalyst for Propane Dehydrogenation. ACS Omega, 2018, 3, 11117-11127.	1.6	43
18	Syntheses and Structures of Molybdenum Imido Alkylidene Pyrrolide and Indolide Complexes. Organometallics, 2008, 27, 6570-6578.	1.1	40

Adam S Hock

#	Article	IF	CITATIONS
19	Synthesis of High Oxidation State Bimetallic Alkylidene Complexes for Controlled ROMP Synthesis of Triblock Copolymers. Organometallics, 2005, 24, 5058-5066.	1.1	38
20	A Remarkably Active Iron Catecholate Catalyst Immobilized in a Porous Organic Polymer. ACS Catalysis, 2013, 3, 826-830.	5.5	38
21	Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies. ACS Catalysis, 2015, 5, 7177-7185.	5.5	38
22	Phase Discrimination through Oxidant Selection in Low-Temperature Atomic Layer Deposition of Crystalline Iron Oxides. Langmuir, 2013, 29, 3439-3445.	1.6	37
23	Oxygen-Free Atomic Layer Deposition of Indium Sulfide. ACS Applied Materials & Interfaces, 2014, 6, 12137-12145.	4.0	37
24	Template-Free Vapor-Phase Growth of Patrónite by Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 2864-2873.	3.2	37
25	V _{<i>x</i>} In _(2–<i>x</i>) S ₃ Intermediate Band Absorbers Deposited by Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 2033-2040.	3.2	35
26	Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.	6.6	34
27	Synthesis of Molybdenum(VI) Monoimido Alkyl and Alkylidene Complexes. Organometallics, 2005, 24, 1929-1937.	1.1	32
28	Assignment of the oxidation states of Zr and Co in a highly reactive heterobimetallic Zr/Co complex using X-ray absorption spectroscopy (XANES). Dalton Transactions, 2014, 43, 13852.	1.6	29
29	Synthesis and Catalytic Hydrogenation Reactivity of a Chromium Catecholate Porous Organic Polymer. Organometallics, 2015, 34, 947-952.	1.1	27
30	Synthesis of Molybdenum Imido Alkylidene Complexes That Contain Siloxides. Organometallics, 2007, 26, 6674-6680.	1.1	26
31	Synthesis, Characterization, and Activation of Zirconium and Hafnium Dialkyl Complexes that Contain aC2-Symmetric Diaminobinaphthyl Dipyridine Ligand. Organometallics, 2005, 24, 3335-3342.	1.1	25
32	Supported Aluminum Catalysts for Olefin Hydrogenation. ACS Catalysis, 2017, 7, 689-694.	5.5	25
33	Some Organometallic Chemistry of Molybdenum Complexes that Contain the [HIPTN3N]3-Triamidoamine Ligand, {[3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2]3N}3 Organometallics, 2005, 24, 4437-4450.	1.1	22
34	Rhodium Catechol Containing Porous Organic Polymers: Defined Catalysis for Single-Site and Supported Nanoparticulate Materials. Organometallics, 2014, 33, 2517-2522.	1.1	22
35	Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis–catalysis testing tool. Review of Scientific Instruments, 2015, 86, 084103.	0.6	20
36	Synthesis, Characterization, and Polymerization Behavior of Zirconium and Hafnium Complexes that Contain Asymmetric Diamido-N-Donor Ligands. Organometallics, 2004, 23, 4362-4372.	1.1	16

Adam S Hock

#	Article	IF	CITATIONS
37	A modular reactor design for <i>in situ</i> synchrotron x-ray investigation of atomic layer deposition processes. Review of Scientific Instruments, 2015, 86, 113901.	0.6	16
38	Oxidation State Discrimination in the Atomic Layer Deposition of Vanadium Oxides. Chemistry of Materials, 2017, 29, 6238-6244.	3.2	16
39	Molybdenum and Tungsten Complexes That Contain the Diamidoamine Ligands [(C6F5NCH2CH2)2NMe]2-, [(3,4,5-C6H2F3NCH2CH2)2NMe]2-, and [(3-CF3C6H4NCH2CH2)2NMe]2 Organometallics, 2004, 23, 665-678.	1.1	15
40	Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene. Organometallics, 2017, 36, 3677-3685.	1.1	15
41	Synthetic and Spectroscopic Study of the Mechanism of Atomic Layer Deposition of Tin Dioxide. Organometallics, 2016, 35, 1202-1208.	1.1	12
42	Monomolecular Siloxane Film as a Model of Single Site Catalysts. Journal of the American Chemical Society, 2016, 138, 12432-12439.	6.6	11
43	Development of activity–descriptor relationships for supported metal ion hydrogenation catalysts on silica. Polyhedron, 2018, 152, 73-83.	1.0	11
44	Nuclearity effects in supported, single-site Fe(<scp>ii</scp>) hydrogenation pre-catalysts. Dalton Transactions, 2018, 47, 10842-10846.	1.6	9
45	Oxidative Reactions of the MoIV Dialkyl Complex [{(3-CF3C6H4NCH2CH2)2NMe}Mo(CH2SiMe3)2]. Chemistry - an Asian Journal, 2007, 2, 867-874.	1.7	8
46	Growth of Ta ₂ SnO ₆ Films, a Candidate Wide-Band-Gap p-Type Oxide. Journal of Physical Chemistry C, 2022, 126, 3764-3775.	1.5	8
47	In Situ Xâ€ray Absorption Spectroscopy and Nonclassical Catalytic Hydrogenation with an Iron(II) Catecholate Immobilized on a Porous Organic Polymer. European Journal of Inorganic Chemistry, 2013, 2013, 3972-3977.	1.0	7
48	Selective Hydroxylation of In ₂ O ₃ as A Route to Site-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 0, , .	1.5	6
49	Crystalline WS ₂ via Room Temperature, Solution-Phase Synthesis. Inorganic Chemistry, 2017, 56, 106-109.	1.9	2
50	Thermal Atomic Layer Deposition of Gold: Mechanistic Insights, Nucleation, and Epitaxy. ACS Applied Materials & Interfaces, 2021, 13, 9091-9100.	4.0	2
51	Comparison of Ligand Architecture on Vapor Deposition Precursors: Synthesis, Characterization, and Reactivity of Volatile Cadmium Bis-Amidinate Complexes. Inorganic Chemistry, 2021, 60, 6191-6200.	1.9	2
52	Chemical and spatial control of substitutional intermediate band materials: Toward the atomic layer deposition of V <inf>0.25</inf> In <inf>1.75</inf> SP <inf>3</inf> . , 2014, , .		1