
Lei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7870202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow-rate and particle-size insensitive inertial focusing in dimension-confined ultra-low aspect ratio spiral microchannel. Sensors and Actuators B: Chemical, 2022, 369, 132284.	4.0	10
2	A plug-and-play 3D hydrodynamic focusing Raman platform for label-free and dynamic single microparticle detection. Sensors and Actuators B: Chemical, 2022, 369, 132273.	4.0	4
3	Smartphone-Based Quantitative Fluorescence Detection of Flowing Droplets Using Embedded Ambient Light Sensor. IEEE Sensors Journal, 2021, 21, 4451-4461.	2.4	5
4	Facile PEG-based isolation and classification of cancer extracellular vesicles and particles with label-free surface-enhanced Raman scattering and pattern recognition algorithm. Analyst, The, 2021, 146, 1949-1955.	1.7	11
5	Drug preconcentration and direct quantification in biofluids using 3D-Printed paper cartridge. Biosensors and Bioelectronics, 2021, 189, 113266.	5.3	11
6	Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips <i>via</i> commercial 3D-printers. Soft Matter, 2020, 16, 3096-3105.	1.2	13
7	Non-powered capillary force-driven stamped approach for directly printing nanomaterials aqueous solution on paper substrate. Lab on A Chip, 2020, 20, 931-941.	3.1	7
8	3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels. Nanomaterials, 2019, 9, 1451.	1.9	17
9	Simultaneously Enhanced Singlet Oxygen and Fluorescence Production of Nanoplatform by Surface Plasmon Resonance Coupling for Biomedical Applications. Langmuir, 2019, 35, 14833-14839.	1.6	10
10	River meander-inspired cross-section in 3D-printed helical microchannels for inertial focusing and enrichment. Sensors and Actuators B: Chemical, 2019, 301, 127125.	4.0	13
11	Dynamic Liquid Surface Enhanced Raman Scattering Platform Based on Soft Tubular Microfluidics for Label-Free Cell Detection. Analytical Chemistry, 2019, 91, 7973-7979.	3.2	32
12	Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Analytical Methods, 2019, 11, 3286-3293.	1.3	33
13	Engineering of Removing Sacrificial Materials in 3D-Printed Microfluidics. Micromachines, 2018, 9, 327.	1.4	19
14	Phylogenetic and pathogenic characterization of a pigeon paramyxovirus type 1 isolate reveals cross-species transmission and potential outbreak risks in the northwest region of China. Archives of Virology, 2017, 162, 2755-2767.	0.9	16
15	Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab on A Chip, 2016, 16, 2609-2617.	3.1	22
16	Fabrication of Polydiacetylene Liposome Chemosensor with Enhanced Fluorescent Self-Amplification and Its Application for Selective Detection of Cationic Surfactants. ACS Applied Materials & Interfaces, 2016, 8, 28231-28240.	4.0	42
17	A visualized method for Cu2+ ion detection by self-assembling azide functionalized free graphene oxide using click chemistry. RSC Advances, 2016, 6, 95628-95632.	1.7	13
18	Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics. Lab on A Chip, 2016, 16, 4106-4120.	3.1	27

Lei Zhao

#	Article	IF	CITATIONS
19	Simple and reusable off-the-shelf microfluidic devices for the versatile generation of droplets. Lab on A Chip, 2016, 16, 4718-4724.	3.1	43
20	Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta, 2016, 159, 356-364.	2.9	37
21	On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay. Analytical Chemistry, 2016, 88, 1719-1727.	3.2	98
22	A TBET-based ratiometric probe for Au ³⁺ and its application in living cells. Analyst, The, 2016, 141, 1098-1104.	1.7	17
23	Pneumatic microfluidics-based multiplex single-cell array. Biosensors and Bioelectronics, 2016, 78, 423-430.	5.3	25
24	On-chip assay of the effect of topographical microenvironment on cell growth and cell-cell interactions during wound healing. Biomicrofluidics, 2015, 9, 064112.	1.2	8
25	High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics. Analyst, The, 2015, 140, 827-836.	1.7	22
26	Sodium Fluoride Affects DNA Methylation of Imprinted Genes in Mouse Early Embryos. Cytogenetic and Genome Research, 2015, 147, 41-47.	0.6	12
27	Electrochemically Reduced Carboxyl Graphene Modified Electrode for Simultaneous Determination of Guanine and Adenine. Analytical Letters, 2015, 48, 1465-1480.	1.0	5
28	Deformability and size-based cancer cell separation using an integrated microfluidic device. Analyst, The, 2015, 140, 7335-7346.	1.7	34
29	Monitoring Tumor Response to Anticancer Drugs Using Stable Three-Dimensional Culture in a Recyclable Microfluidic Platform. Analytical Chemistry, 2015, 87, 9752-9760.	3.2	53
30	Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Analytical Methods, 2015, 7, 10040-10051.	1.3	22
31	Voltammetric behavior of carboxyl hydrogel particles on a cavity electrode surface. Electrochimica Acta, 2014, 130, 22-28.	2.6	3
32	Carboxyl hydrogel particle film as a proton source for electrode surface modification. Electrochemistry Communications, 2014, 38, 75-78.	2.3	5
33	Voltammetric Behavior of Guanine at ERGO/GC Electrode and Its Application in Cell Counting. Journal of the Electrochemical Society, 2014, 161, G21-G25.	1.3	3
34	High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics. Lab on A Chip, 2014, 14, 2525-2538.	3.1	66
35	Pneumatic mold-aided construction of a three-dimensional hydrogel microvascular network in an integrated microfluidics and assay of cancer cell adhesion onto the endothelium. Microfluidics and Nanofluidics, 2013, 15, 519-532.	1.0	12
36	Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis. Reviews in Analytical Chemistry, 2012, 31, .	1.5	32