
Jizhou Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	7.3	341
2	Dependence of electronic structure of g-C 3 N 4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon, 2014, 80, 213-221.	5.4	331
3	An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 2018, 130, 652-663.	5.4	250
4	Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 40, 240-288.	6.9	239
5	Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. Journal of Materials Science and Technology, 2022, 118, 15-24.	5.6	159
6	A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation. Applied Catalysis B: Environmental, 2019, 256, 117796.	10.8	142
7	Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	3.9	133
8	MXenes: An Emerging Platform for Wearable Electronics and Looking Beyond. Matter, 2021, 4, 377-407.	5.0	125
9	Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Applied Surface Science, 2019, 487, 335-342.	3.1	119
10	Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 2019, 48, 4639-4654.	18.7	108
11	Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews, 2022, 51, 2972-2990.	18.7	101
12	Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (Mâ€⁻=â€⊤i, Mo). Applied Surface Science, 2020, 500, 143987.	3.1	93
13	Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte. Journal of Hazardous Materials, 2019, 377, 249-258.	6.5	90
14	Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties. Green Chemistry, 2019, 21, 526-537.	4.6	88
15	Improving stability of MXenes. Nano Research, 2022, 15, 6551-6567.	5.8	87
16	Micro/nano-structured graphitic carbon nitride–Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon, 2015, 87, 193-205.	5.4	86
17	Pd-Fe dual-metal nanoparticles confined in the interface of carbon nanotubes/N-doped carbon for excellent catalytic performance. Applied Surface Science, 2019, 489, 477-484.	3.1	70
18	Single-Metal Atoms Supported on MBenes for Robust Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 9261-9267.	4.0	70

JIZHOU JIANG

#	Article	lF	CITATIONS
19	Strong Interlayer Transition in Few‣ayer InSe/PdSe ₂ van der Waals Heterostructure for Near″nfrared Photodetection. Advanced Functional Materials, 2021, 31, 2104143.	7.8	69
20	Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction. Npj Computational Materials, 2021, 7, .	3.5	63
21	Hydrogenâ€Assisted Growth of Ultrathin Te Flakes with Giant Gateâ€Dependent Photoresponse. Advanced Functional Materials, 2019, 29, 1906585.	7.8	62
22	Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Research, 2022, 15, 5977-5986.	5.8	61
23	Surface oxygen vacancies promoted photodegradation of benzene on TiO2 film. Applied Surface Science, 2020, 511, 145597.	3.1	60
24	Two-step fabrication of single-layer rectangular SnSe flakes. 2D Materials, 2017, 4, 021026.	2.0	57
25	A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Applied Surface Science, 2018, 430, 362-370.	3.1	56
26	Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS). Scientific Reports, 2016, 6, 34599.	1.6	52
27	Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Letters, 2022, 32, 1277-1285.	3.3	50
28	Fabry–Perot Cavity-Enhanced Optical Absorption in Ultrasensitive Tunable Photodiodes Based on Hybrid 2D Materials. Nano Letters, 2017, 17, 7593-7598.	4.5	48
29	Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for l-tyrosine. Applied Surface Science, 2019, 467-468, 608-618.	3.1	47
30	Degradation of Methylene Blue with H ₂ O ₂ Activated by Peroxidase-Like Fe ₃ O ₄ Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 4793-4799.	0.9	45
31	Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photoconduction. Materials Letters, 2018, 212, 288-291.	1.3	44
32	Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 24195-24214.	5.2	41
33	A cysteine derivative-enabled ultrafast thiol–ene reaction for scalable synthesis of a fully bio-based internal emulsifier for high-toughness waterborne polyurethanes. Green Chemistry, 2020, 22, 5722-5729.	4.6	38
34	Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nanoflakes. Applied Surface Science, 2020, 506, 144672.	3.1	37
35	Highly Sensitive and Selective Gas Sensor Using Heteroatom Doping Graphdiyne: A DFT Study. Advanced Electronic Materials, 2021, 7, 2001244.	2.6	37
36	Reducing the Schottky barrier between few-layer MoTe ₂ and gold. 2D Materials, 2017, 4, 045016.	2.0	35

JIZHOU JIANG

#	Article	IF	CITATIONS
37	Density Functional Theory Study of Single Metal Atoms Embedded into MBene for Electrocatalytic Conversion of N ₂ to NH ₃ . ACS Applied Nano Materials, 2020, 3, 9870-9879.	2.4	35
38	Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2019, 299, 126945.	4.0	31
39	Built-in electric field-assisted step-scheme heterojunction of carbon nitride-copper oxide for highly selective electrochemical detection of p-nonylphenol. Electrochimica Acta, 2020, 354, 136658.	2.6	26
40	Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts. Journal of Alloys and Compounds, 2022, 911, 165020.	2.8	25
41	Nickel Oxide and Nickel Coâ€doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application. Electroanalysis, 2016, 28, 227-234.	1.5	21
42	NiO and Co ₃ O ₄ co-doped g-C ₃ N ₄ nanocomposites with excellent photoelectrochemical properties under visible light for detection of tetrabromobisphenol-A. RSC Advances, 2017, 7, 36015-36020.	1.7	18
43	Influence of oxygen adsorption on the chemical stability and conductivity of transition metal ceramic coatings: First-principle calculations. Applied Surface Science, 2019, 495, 143530.	3.1	17
44	Atomic-Scale Superlubricity in Ti ₂ CO ₂ @MoS ₂ Layered Heterojunctions Interface: A First Principles Calculation Study. ACS Omega, 2021, 6, 9013-9019.	1.6	16
45	Improving the surface-enhanced Raman scattering activity of carbon nitride by two-step calcining. RSC Advances, 2016, 6, 47368-47372.	1.7	15
46	Spaceâ€Confined Growth of 2D InI Showing High Sensitivity in Photodetection. Advanced Electronic Materials, 2020, 6, 2000284.	2.6	14
47	A dynamic anode boosting sulfamerazine mineralization <i>via</i> electrochemical oxidation. Journal of Materials Chemistry A, 2021, 10, 192-208.	5.2	12
48	A Comparative Study of the Photoconduction, Photocatalytic and Electrocatalytic Performance of g-C3N4/ZnS/CuS Heterojunctions with Different Morphologies. Catalysis Letters, 2018, 148, 3342-3348.	1.4	10
49	Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chemical Engineering Journal Advances, 2021, 8, 100175.	2.4	9
50	Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. IScience, 2022, 25, 103753.	1.9	9
51	Irregularly Shaped Bimetallic Chalcogenide Ag ₈ SnS ₆ Nanoparticles as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 6745-6751.	2.4	7
52	Novel Applications of Micro/Nanostructured Volcanic Ash for Water Purification and Surface-Enhanced Raman Spectroscopy. Analytical Letters, 2016, 49, 2793-2806.	1.0	3
53	Two-Dimensional Materials Based Optoelectronics. Advances in Condensed Matter Physics, 2017, 2017, 1-2.	0.4	1
54	Atmospheric Pressure Fabrication of Large-Sized Single-Layer Rectangular SnSe Flakes. Journal of Visualized Experiments, 2018, , .	0.2	1