
Ralf Zimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869795/publications.pdf Version: 2024-02-01

PALE ZIMMED

#	Article	IF	CITATIONS
1	Toward a gold standard for benchmarking gene set enrichment analysis. Briefings in Bioinformatics, 2021, 22, 545-556.	3.2	83
2	Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVIDâ€19 from influenza pneumonia. Journal of Thrombosis and Haemostasis, 2021, 19, 574-581.	1.9	80
3	Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight, 2021, 6, .	2.3	71
4	CNVRanger: association analysis of CNVs with gene expression and quantitative phenotypes. Bioinformatics, 2020, 36, 972-973.	1.8	17
5	MS-EmpiRe Utilizes Peptide-level Noise Distributions for Ultra-sensitive Detection of Differentially Expressed Proteins. Molecular and Cellular Proteomics, 2019, 18, 1880-1892.	2.5	27
6	YESdb: integrative analysis of environmental stress in yeast. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	1
7	Multi-Reference Spectral Library Yields Almost Complete Coverage of Heterogeneous LC-MS/MS Data Sets. Journal of Proteome Research, 2019, 18, 1553-1566.	1.8	5
8	Widespread modulation of gene expression by copy number variation in skeletal muscle. Scientific Reports, 2018, 8, 1399.	1.6	25
9	miR-103 promotes endothelial maladaptation by targeting IncWDR59. Nature Communications, 2018, 9, 2645.	5.8	57
10	Bioinformatics advances biology and medicine by turning big data troves into knowledge. Informatik-Spektrum, 2017, 40, 153-160.	1.0	2
11	EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathogens, 2017, 13, e1006664.	2.1	25
12	Genome-Wide Detection of CNVs and Their Association with Meat Tenderness in Nelore Cattle. PLoS ONE, 2016, 11, e0157711.	1.1	59
13	Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins. Journal of Molecular Biology, 2016, 428, 1544-1557.	2.0	5
14	Bioconductor's EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinformatics, 2016, 17, 45.	1.2	79
15	Count ratio model reveals bias affecting NGS fold changes. Nucleic Acids Research, 2015, 43, gkv696.	6.5	14
16	ContextMap 2: fast and accurate context-based RNA-seq mapping. BMC Bioinformatics, 2015, 16, 122.	1.2	54
17	Alternative Splicing in Next Generation Sequencing Data of Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0140487.	1.1	41
18	Inactivation of Intergenic Enhancers by EBNA3A Initiates and Maintains Polycomb Signatures across a Chromatin Domain Encoding CXCL10 and CXCL9. PLoS Pathogens, 2013, 9, e1003638.	2.1	55

RALF ZIMMER

#	Article	IF	CITATIONS
19	A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucleic Acids Research, 2013, 41, 8452-8463.	6.5	26
20	Mining RNA–Seq Data for Infections and Contaminations. PLoS ONE, 2013, 8, e73071.	1.1	13
21	Rigorous assessment of gene set enrichment tests. Bioinformatics, 2012, 28, 1480-1486.	1.8	27
22	A context-based approach to identify the most likely mapping for RNA-seq experiments. BMC Bioinformatics, 2012, 13, S9.	1.2	14
23	From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics, 2011, 27, i366-i373.	1.8	64
24	FERN – a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinformatics, 2008, 9, 356.	1.2	26
25	Alternative splicing and protein structure evolution. Nucleic Acids Research, 2008, 36, 550-558.	6.5	100
26	Bootstrapping the Interactome: Unsupervised Identification of Protein Complexes in Yeast. Lecture Notes in Computer Science, 2008, , 3-16.	1.0	48
27	RelExRelation extraction using dependency parse trees. Bioinformatics, 2007, 23, 365-371.	1.8	417
28	Toward the complete interactome. Nature Biotechnology, 2006, 24, 614-615.	9.4	15
29	Gene and protein nomenclature in public databases. BMC Bioinformatics, 2006, 7, 372.	1.2	41
30	A simple approach for protein name identification: prospects and limits. BMC Bioinformatics, 2005, 6, S15.	1.2	38
31	Expert knowledge without the expert: integrated analysis of gene expression and literature to derive active functional contexts. Bioinformatics, 2005, 21, ii259-ii267.	1.8	28
32	ToPNetan application for interactive analysis of expression data and biological networks. Bioinformatics, 2004, 20, 1470-1471.	1.8	14
33	New methods for joint analysis of biological networks and expression data. Bioinformatics, 2004, 20, 1517-1521.	1.8	68