Yi-Hua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786973/publications.pdf

Version: 2024-02-01

136950 149698 56 3,365 61 32 citations h-index g-index papers 76 76 76 3895 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	BRITTLE CULM1, Which Encodes a COBRA-Like Protein, Affects the Mechanical Properties of Rice Plants. Plant Cell, 2003, 15, 2020-2031.	6.6	369
2	A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant Cell, 2015, 27, 1681-1696.	6.6	233
3	The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology, 2021, 63, 251-272.	8.5	182
4	Rice cellulose synthaseâ€like D4 is essential for normal cellâ€wall biosynthesis and plant growth. Plant Journal, 2009, 60, 1055-1069.	5.7	159
5	Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils. PLoS Genetics, 2013, 9, e1003704.	3.5	129
6	Increased Leaf Angle 1, a Raf-Like MAPKKK That Interacts with a Nuclear Protein Family, Regulates Mechanical Tissue Formation in the Lamina Joint of Rice Â. Plant Cell, 2011, 23, 4334-4347.	6.6	123
7	A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Molecular Biology, 2009, 71, 509-524.	3.9	114
8	Brittleâ€fCulmâ€f12, a dualâ€ŧargeting kinesinâ€4 protein, controls cellâ€cycle progression and wall properties in rice. Plant Journal, 2010, 63, 312-328.	5.7	114
9	Mechanical regulation of organ asymmetry in leaves. Nature Plants, 2017, 3, 724-733.	9.3	110
10	BC10, a DUF266â€containing and Golgiâ€located type II membrane protein, is required for cellâ€wall biosynthesis in rice (<i>Oryza sativa</i> L.). Plant Journal, 2009, 57, 446-462.	5.7	109
11	Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants, 2017, 3, 17017.	9.3	98
12	Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation, Which Is Essential for Leaf Blight Resistance in Rice. Plant Physiology, 2017, 173, 470-481.	4.8	94
13	<i>Brittle Culm15</i> Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice Â. Plant Physiology, 2012, 159, 1440-1452.	4.8	76
14	Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Molecular Plant, 2013, 6, 768-780.	8.3	76
15	The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant Journal, 2010, 64, no-no.	5.7	70
16	Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5110-5115.	7.1	67
17	Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants. Molecular Plant, 2020, 13, 1644-1653.	8.3	66
18	MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications, 2020, 11, 5219.	12.8	61

#	Article	IF	CITATIONS
19	<i>MALE GAMETOPHYTE DEFECTIVEâ€f4</i> encodes a rhamnogalacturonanâ€fII xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis. Plant Journal, 2011, 65, 647-660.	5.7	60
20	Natural variation of <i>Câ€repeatâ€binding factor</i> (<i><scp>CBF</scp></i> s) genes is a major cause of divergence in freezing tolerance among a group of <i>Arabidopsis thaliana</i> populations along the Yangtze River in China. New Phytologist, 2013, 199, 1069-1080.	7.3	60
21	Arabinosyl Deacetylase Modulates the Arabinoxylan Acetylation Profile and Secondary Wall Formation. Plant Cell, 2019, 31, 1113-1126.	6.6	60
22	Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development. Plant Cell, 2017, 29, 2433-2449.	6.6	59
23	Rice Brittleness Mutants: A Way to Open the â€~Black Box' of Monocot Cell Wall BiosynthesisFree Access. Journal of Integrative Plant Biology, 2011, 53, 136-142.	8.5	57
24	Sweet Sorghum Originated through Selection of <i>Dry</i> , a Plant-Specific NAC Transcription Factor Gene. Plant Cell, 2018, 30, 2286-2307.	6.6	55
25	A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nature Communications, 2018, 9, 3678.	12.8	54
26	Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. Journal of Experimental Botany, 2014, 65, 4149-4157.	4.8	52
27	An Uncanonical CCCH-Tandem Zinc-Finger Protein Represses Secondary Wall Synthesis and Controls Mechanical Strength in Rice. Molecular Plant, 2018, 11, 163-174.	8.3	51
28	The Cellulose Synthases Are Cargo of the TPLATE Adaptor Complex. Molecular Plant, 2018, 11, 346-349.	8.3	51
29	Rice Homeobox Protein KNAT7 Integrates the Pathways Regulating Cell Expansion and Wall Stiffness. Plant Physiology, 2019, 181, 669-682.	4.8	44
30	Microdissection and microcloning of rye (Secale cereale L.) chromosome 1R. Chromosoma, 1999, 108, 250-255.	2.2	40
31	DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21766-21774.	7.1	39
32	Rabâ∈H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in ⟨i⟩Arabidopsis thaliana⟨/i⟩. Journal of Integrative Plant Biology, 2018, 60, 1051-1069.	8.5	38
33	Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species. Molecular Plant, 2012, 5, 162-175.	8.3	34
34	Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment. Biotechnology for Biofuels, 2021, 14, 14.	6.2	32
35	Functional understanding of secondary cell wall cellulose synthases in <i>Populusti>tichocarpa</i> via the Cas9/gRNAâ€induced gene knockouts. New Phytologist, 2021, 231, 1478-1495.	7. 3	26
36	A solid-state nanopore-based single-molecule approach for label-free characterization of plant polysaccharides. Plant Communications, 2021, 2, 100106.	7.7	23

#	Article	IF	CITATIONS
37	Xylan-based nanocompartments orchestrate plant vessel wall patterning. Nature Plants, 2022, 8, 295-306.	9.3	23
38	Xyloglucan Fucosylation Modulates Arabidopsis Cell Wall Hemicellulose Aluminium binding Capacity. Scientific Reports, 2018, 8, 428.	3.3	22
39	Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis. PLoS ONE, 2016, 11, e0153119.	2.5	22
40	Low-Boron Tolerance Strategies Involving Pectin-Mediated Cell Wall Mechanical Properties in Brassica napus. Plant and Cell Physiology, 2017, 58, 1991-2005.	3.1	18
41	Nanoscale Observation of Microfibril Swelling and Dissolution in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 909-917.	6.7	18
42	The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genetics, 2018, 14, e1007769.	3.5	17
43	Glycosyltransferaseâ€ike protein <scp>ABI</scp> 8/ <scp>ELD</scp> 1/ <scp>KOB</scp> 1 promotes <scp><i>A</i></scp> <i>rabidopsis</i> <ia>Rabidopsis hypocotyl elongation through regulating cellulose biosynthesis. Plant, Cell and Environment, 2015, 38, 411-422.</ia>	5 . 7	16
44	Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signaling and Behavior, 2011, 6, 1097-1100.	2.4	13
45	Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. Molecular Plant, 2021, 14, 1640-1651.	8.3	13
46	UDPâ€Api/UDPâ€Xyl synthases affect plant development by controlling the content of UDPâ€Api to regulate the RGâ€IIâ€borate complex. Plant Journal, 2020, 104, 252-267.	5.7	12
47	Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Scientific Reports, 2017, 7, 12561.	3.3	11
48	The transcription factor ZmMYB69 represses lignin biosynthesis by activating <i>ZmMYB31/42</i> expression in maize. Plant Physiology, 2022, 189, 1916-1919.	4.8	11
49	PagMYB216 is involved in the regulation of cellulose synthesis in Populus. Molecular Breeding, 2019, 39, 1.	2.1	10
50	Identification and fine mapping of qGN1c, a QTL for grain number per panicle, in rice (Oryza sativa). Molecular Breeding, 2019, 39, 1.	2.1	9
51	Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Science China Life Sciences, 2021, 64, 720-738.	4.9	9
52	Construction of single-chromosome DNA library fromLilium regale Wilson. Science Bulletin, 1998, 43, 434-439.	1.7	8
53	Microdissection of a single chromosome and construction of the microclone library from soybean. Euphytica, 2001, 121, 129-135.	1.2	8
54	Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice. Journal of Experimental Botany, 2014, 65, 3055-3069.	4.8	8

Yı-Hua Zhou

#	Article	IF	CITATION
55	Carbohydrate Composition Analysis in Xylem. Methods in Molecular Biology, 2017, 1544, 213-222.	0.9	7
56	Rice <i>STOMATAL CYTOKINESIS DEFECTIVE2</i> regulates cell expansion by affecting vesicular trafficking in rice. Plant Physiology, 2022, 189, 567-584.	4.8	7
57	Introduction of pokeweed antiviral protein cDNA intoBrassica napus and acquisition of transgenic plants resistant to viruses. Science Bulletin, 1999, 44, 701-704.	1.7	5
58	Membrane trafficking mediated by OsDRP2B is specific for cellulose biosynthesis. Plant Signaling and Behavior, 2010, 5, 1483-1486.	2.4	5
59	Chromosome microdissection by laser microbeam, chromosomal fragment isolation and amplificationin vitro in barley (Hordeum vulgare L.). Science Bulletin, 1998, 43, 851-855.	1.7	4
60	Rice plants response to the disruption of OsCSLD4 gene. Plant Signaling and Behavior, 2010, 5, 136-139.	2.4	2
61	Cell Wall Compositional Analysis of Rice Culms. Bio-protocol, 2019, 9, e3398.	0.4	2