
Tong Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensing using a fluorescent product generated from Cu ²⁺ assisted Lâ€Ascorbic acid oxidation. Nano Select, 2022, 3, 723-732.	1.9	Ο
2	Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. Small, 2022, 18, e2103516.	5.2	39
3	Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection. Analytica Chimica Acta, 2022, 1192, 339331.	2.6	10
4	Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Analytical Chemistry, 2022, 94, 3408-3417.	3.2	34
5	Multi-responsive micro/nanogels for optical sensing. Advances in Physics: X, 2022, 7, .	1.5	2
6	"Gold Inlaid with Hair― Permanent Fluorescent Hair Dyeing Using Fast Protein-Assisted Biomineralization of Gold Nanoclusters. ACS Sustainable Chemistry and Engineering, 2022, 10, 305-313.	3.2	2
7	Luminescent Sensors Based on the Assembly of Coinage Metal Nanoclusters. Chemosensors, 2022, 10, 253.	1.8	2
8	An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors, 2022, 12, 511.	2.3	4
9	The role of NO in COVID-19 and potential therapeutic strategies. Free Radical Biology and Medicine, 2021, 163, 153-162.	1.3	82
10	Au Nanoclusters Based Biosensors. , 2021, , 1-57.		0
11	Luminescent wearable biosensors based on gold nanocluster networks for "turn-on―detection of Uric acid, glucose and alcohol in sweat. Biosensors and Bioelectronics, 2021, 192, 113530.	5.3	45
12	Serum nitrite and nitrate: A potential biomarker for post-covid-19 complications?. Free Radical Biology and Medicine, 2021, 175, 216-225.	1.3	23
13	Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection. Biosensors and Bioelectronics, 2021, 193, 113571.	5.3	5
14	Recent advances in stimuli-responsive polymers for sensing and actuation. Molecular Systems Design and Engineering, 2021, 6, 108-121.	1.7	18
15	Portable point-of-care diagnostic devices: an updated review. Analytical Methods, 2021, 13, 5418-5435.	1.3	13
16	Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst, The, 2020, 145, 5713-5724.	1.7	28
17	Stimuli-responsive polymer-based systems for diagnostic applications. Journal of Materials Chemistry B, 2020, 8, 7042-7061.	2.9	37
18	Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. Crystals, 2020, 10, 357.	1.0	32

Толд Ѕни

#	Article	IF	CITATIONS
19	Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. Analytical and Bioanalytical Chemistry, 2020, 412, 6655-6665.	1.9	15
20	Rational Design of "Three-in-One―Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. ACS Omega, 2020, 5, 8943-8951.	1.6	9
21	An Aggregation-Induced Phosphorescence-Active "Turn-Off―Nanosensor Based on Ferric-Specific Quenching of Luminescent and Water-Soluble Au(I)–Cysteine Nanocomplexes. Analytical Chemistry, 2020, 92, 6785-6791.	3.2	18
22	Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing. Molecules, 2019, 24, 3045.	1.7	22
23	Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. Nanoscale, 2019, 11, 294-300.	2.8	37
24	Understanding stimuli-responsive oligomer shell of silver nanoclusters with aggregation-induced emission via chemical etching and their use as sensors. Sensors and Actuators B: Chemical, 2019, 286, 198-205.	4.0	21
25	Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. International Journal of Molecular Sciences, 2019, 20, 1891.	1.8	41
26	Synthesis of Luminescent Gold Nanoclusters Embedded Goose Feathers for Facile Preparation of Au(I) Complexes with Aggregation-Induced Emission. ACS Sustainable Chemistry and Engineering, 2019, 7, 592-598.	3.2	12
27	Dual-emissive gold nanoclusters for label-free and separation-free ratiometric fluorescence sensing of 4-nitrophenol based on the inner filter effect. Journal of Materials Chemistry C, 2018, 6, 5033-5038.	2.7	38
28	Silver nanoparticle-loaded microgel-based etalons for H ₂ O ₂ sensing. RSC Advances, 2018, 8, 15567-15574.	1.7	13
29	In Situ Synthesis of CuS Nanoparticle-Doped Poly(N-isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 1776-1783.	2.4	19
30	pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(<scp>i</scp>)〓thiolate shell. Materials Chemistry Frontiers, 2018, 2, 923-928.	3.2	37
31	A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes. Chemical Communications, 2018, 54, 818-820.	2.2	17
32	Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission. Critical Reviews in Analytical Chemistry, 2018, 48, 330-336.	1.8	11
33	Synthesis of poly (<i>N</i> -isopropylacrylamide)- <i>co</i> -(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye. RSC Advances, 2018, 8, 16850-16857.	1.7	15
34	Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor. Analytical Chemistry, 2016, 88, 6071-6077.	3.2	48
35	Combination of chemical etching of gold nanoclusters with aggregation-induced emission for preparation of new phosphors for the development of UV-driven phosphor-converted white light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 11482-11487.	2.7	19
36	Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine. Analytical Chemistry, 2016, 88, 11193-11198.	3.2	44

Толс Ѕни

#	Article	IF	CITATIONS
37	Current control by electrode coatings formed by polymerization of dopamine at prussian blue-modified electrodes. Analyst, The, 2016, 141, 2067-2071.	1.7	7
38	Horseradish Peroxidase-modified Single-walled Carbon Nanotubes as Biocathode for Assembling a Membrane-less Glucose-H2O2 Biofuel Cell. Current Nanoscience, 2016, 12, 405-410.	0.7	3
39	Hidden Dityrosine Residues in Protein-Protected Gold Nanoclusters. Journal of Physical Chemistry C, 2015, 119, 12065-12070.	1.5	32
40	Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosensors and Bioelectronics, 2015, 66, 155-161.	5.3	58
41	Fluorescent Film Sensors Based on Fluorescent Gold and Silver Nanoclusters. Current Nanoscience, 2015, 11, 702-709.	0.7	5
42	Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. Biosensors and Bioelectronics, 2013, 44, 16-20.	5.3	44
43	Single-walled carbon nanotube ensembles modified gold ultramicroelectrodes prepared by self-assembly deposition method with 1-(1-pyrenyl)-1-methanethiol monolayer as an adhesion layer. Electrochemistry Communications, 2012, 20, 163-166.	2.3	5