
Satoshi Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and preliminary <i>in vivo</i> evaluation of a self-expandable hydrogel stent with anisotropic swelling behavior and endoscopic deliverability for use in biliary drainage. Journal of Materials Chemistry B, 2022, , .	5.8	1
2	Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS Omega, 2022, 7, 19997-20005.	3.5	5
3	<i>In Situ</i> Radical Polymerization of <i>N</i> -isopropylacrylamide in Electrospun Anisotropic Nanofiber of Poly (Ethylene Oxide). Journal of Fiber Science and Technology, 2021, 77, 40-45.	0.4	1
4	Electrospun collagen core/poly- <scp>l</scp> -lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Advances, 2021, 11, 5703-5711.	3.6	23
5	Nanofiber-Mâché Hollow Ball Mimicking the Three-Dimensional Structure of a Cyst. Polymers, 2021, 13, 2273.	4.5	5
6	Cell Trapping via Migratory Inhibition within Density-Tuned Electrospun Nanofibers. ACS Applied Bio Materials, 2021, 4, 7456-7466.	4.6	7
7	One-Step Surface Immobilization of Protein A on Hydrogel Nanofibers by Core-Shell Electrospinning for Capturing Antibodies. International Journal of Molecular Sciences, 2021, 22, 9857.	4.1	2
8	Bundling of Cellulose Nanofibers in PEO Matrix by Aqueous Electrospinning. Journal of Fiber Science and Technology, 2021, 77, 223-230.	0.4	2
9	Hyaluronic Acid Hydrogel Crosslinked with Complementary DNAs. Advances in Polymer Technology, 2020, 2020, 1-7.	1.7	12
10	Selfâ€expandable hydrogel biliary stent design utilizing the swelling property of poly(vinyl alcohol) hydrogel. Journal of Applied Polymer Science, 2020, 137, 48851.	2.6	5
11	Fabrication of tough, anisotropic, chemical-crosslinker-free poly(vinyl alcohol) nanofibrous cryogels <i>via</i> electrospinning. RSC Advances, 2020, 10, 38045-38054.	3.6	15
12	Geometrically customizable alginate hydrogel nanofibers for cell culture platforms. Journal of Materials Chemistry B, 2019, 7, 6556-6563.	5.8	32
13	Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Scientific Reports, 2018, 8, 6248.	3.3	78
14	Electrospinning of Native Collagen Hydrogel Nanofibers. Journal of Fiber Science and Technology, 2018, 74, P-374-P-378.	0.0	1
15	A Freezeâ€Concentration and Polyampholyteâ€Modified Liposomeâ€Based Antigenâ€Delivery System for Effective Immunotherapy. Advanced Healthcare Materials, 2017, 6, 1700207.	7.6	9
16	Design of Hydroxy-Functionalized Thermoresponsive Copolymers: Improved Direct Radical Polymerization of Hydroxy-Functional Vinyl Ethers. Macromolecules, 2017, 50, 8346-8356.	4.8	20
17	Direct cryopreservation of adherent cells on an elastic nanofiber sheet featuring a low glass-transition temperature. RSC Advances, 2017, 7, 51264-51271.	3.6	28
18	Estimation of the Core-Shell Formation Efficiency of Electrospun Collagen/Polylactic Acid Nanofibers. Kobunshi Ronbunshu, 2016, 73, 366-369.	0.2	1

Satoshi Fujita

#	Article	IF	CITATIONS
19	Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration. Nanoscale, 2016, 8, 15888-15901.	5.6	33
20	Multiphoton lonization Time-of-Flight Mass Spectrometry for the Detection of Bioactive Lignan. Analytical Sciences, 2016, 32, 255-257.	1.6	5
21	Complex film of chitosan and carboxymethyl cellulose nanofibers. Colloids and Surfaces B: Biointerfaces, 2016, 139, 95-99.	5.0	23
22	Design and Fabrication of Conductive Nanofiber Using Electrospinning. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 461-464.	0.1	0
23	Approach to Medical Application of Electrospun Nanofibers. Journal of Fiber Science and Technology, 2016, 72, P-206-P-206.	0.0	0
24	Biohybrid hematopoietic niche for expansion of hematopoietic stem/progenitor cells by using geometrically controlled fibrous layers. RSC Advances, 2015, 5, 80357-80364.	3.6	17
25	Taiwanin A incorporated polyurethane fiber sheets for prevention of postoperative cancer recurrence. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 558-571.	3.5	2
26	A holistic approach into the impact of sodium hypochlorite on polypropylene fibre reinforced concrete. Construction and Building Materials, 2015, 85, 175-181.	7.2	1
27	Atomic force microscopy visualization of hard segment alignment in stretched polyurethane nanofibers prepared by electrospinning. Science and Technology of Advanced Materials, 2014, 15, 015008.	6.1	22
28	Cell orientation and regulation of cell–cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomedical Materials (Bristol), 2013, 8, 055002.	3.3	52
29	Substrates for Human Pluripotent Stem Cell Cultures in Conditioned Medium of Mesenchymal Stem Cells. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 153-165.	3.5	6
30	Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers. Journal of Nanotechnology, 2012, 2012, 1-9.	3.4	14
31	Hydrophilic-modified polyurethane nanofibre scaffolds for culture of hyperthermophiles. Materials Letters, 2012, 72, 88-91.	2.6	3
32	Time-lapse observation of cell alignment on nanogrooved patterns. Journal of the Royal Society Interface, 2009, 6, S269-77.	3.4	139
33	Supercritical CO2-assisted embossing for studying cell behaviour on microtextured surfaces. Biomaterials, 2008, 29, 4494-4500.	11.4	26
34	High-throughput evaluation of quiescent hematopoietic progenitor cells using a micro-multiwell plate. Analytical and Bioanalytical Chemistry, 2008, 391, 2753-2758.	3.7	2
35	Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochemical and Biophysical Research Communications, 2008, 365, 406-412.	2.1	39
36	Clonal Analysis of Hematopoiesis-Supporting Activity of Human Mesenchymal Stem Cells in Association with Jagged1 Expression and Osteogenic Potential. Cell Transplantation, 2008, 17, 1169-1179.	2.5	17

Satoshi Fujita

#	Article	IF	CITATIONS
37	Microencapsulated feeder cells as a source of soluble factors for expansion of CD34+ hematopoietic stem cells. Biomaterials, 2007, 28, 4795-4805.	11.4	34
38	Functional evaluation of bioartificial liver using RT-PCR. Bio-Medical Materials and Engineering, 2005, 15, 211-8.	0.6	0
39	Effect of low temperature preservation and cell density on metabolic function in a bioartificial liver. Biotechnology and Bioprocess Engineering, 2003, 8, 41-46.	2.6	5
40	Preparation of bioartificial liver using hollow fibers with four different cut-off molecular weights. Transplantation Proceedings, 2000, 32, 1107-1108.	0.6	1
41	Transmission Electron Microscopic Study of Hepatocytes in Bioartificial Liver. Tissue Engineering, 2000, 6, 627-640.	4.6	7
42	Morphologic Studies of Hepatocytes Entrapped in Hollow Fibers of a Bioartificial Liver. ASAIO Journal, 2000, 46, 49-55.	1.6	19
43	Competitive Binding Assay for Thyroxine Using in Vitro Selected Oligonucleotides. Analytical Chemistry, 1998, 70, 3510-3512.	6.5	19