Florian Freudenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869388/publications.pdf

Version: 2024-02-01

567281 552781 37 737 15 26 g-index citations h-index papers 40 40 40 1238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Uncovering associations between mental illness diagnosis, nitric oxide synthase gene variation, and peripheral nitric oxide concentration. Brain, Behavior, and Immunity, 2022, 101, 275-283.	4.1	12
2	Influence of NOS1AP Risk Variants on the Corrected QT (QTc) Interval in the Pharmacotherapy of Schizophrenia. Pharmacopsychiatry, 2022, 55, 266-273.	3.3	3
3	Knockdown of the ADHD Candidate Gene Diras2 in Murine Hippocampal Primary Cells. Journal of Attention Disorders, 2021, 25, 572-583.	2.6	6
4	Hippocampal overexpression of NOS1AP promotes endophenotypes related to mental disorders. EBioMedicine, 2021, 71, 103565.	6.1	8
5	Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. European Neuropsychopharmacology, 2020, 30, 30-43.	0.7	36
6	S177. IMPACT OF NOS1AP AND ITS INTERACTION PARTNERS AT THE GLUTAMATERGIC SYNAPSE ON WORKING MEMORY NETWORKS - AN FMRI IMAGING GENETICS STUDY. Schizophrenia Bulletin, 2020, 46, S105-S105.	4.3	0
7	Resonance energy transfer sensitises and monitors in situ switching of LOV2-based optogenetic actuators. Nature Communications, 2020, 11, 5107.	12.8	4
8	Mouse Ataxin-2 Expansion Downregulates CamKII and Other Calcium Signaling Factors, Impairing Granuleâ€"Purkinje Neuron Synaptic Strength. International Journal of Molecular Sciences, 2020, 21, 6673.	4.1	13
9	Establishing an effective dose for chronic intracerebroventricular administration of clozapine in mice. Acta Neuropsychiatrica, 2019, 31, 305-315.	2.1	2
10	Quantitative analysis of Gria1, Gria2, Dlg1 and Dlg4 expression levels in hippocampus following forced swim stress in mice. Scientific Reports, 2019, 9, 14060.	3.3	3
11	14. Conditional Knockout of Rbfox1, a Cross-Disorder Psychiatric Risk Gene, Causes an Autism-Like Phenotype in Mice. Biological Psychiatry, 2019, 85, S6.	1.3	0
12	Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology, 2019, 156, 107557.	4.1	34
13	Expression of the ADHD candidate gene Diras2 in the brain. Journal of Neural Transmission, 2018, 125, 913-923.	2.8	13
14	F193. Overexpression of NOS1AP in Dorsal Hippocampus and Medial Prefrontal Cortex Induces Schizophrenia-Related Phenotypic Changes. Biological Psychiatry, 2018, 83, S314.	1.3	0
15	Challenges with modelling anxiety disorders: a possible hindrance for drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 279-281.	5.0	11
16	T95. Functional Characterization of a DGKH Genetic Risk Variant for Bipolar Disorder in a Cell Model. Biological Psychiatry, 2018, 83, S165.	1.3	0
17	Expressional profile of the diacylglycerol kinase eta gene DGKH. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 445-454.	3.2	4
18	502. Disrupting Protein-Protein Interactions of Neuronal Nitric Oxide in the Medial Prefrontal Cortex and Dorsal Hippocampus: Implications in Schizophrenia-Related Behaviors. Biological Psychiatry, 2017, 81, S204.	1.3	0

#	Article	IF	CITATIONS
19	The regulation of tetraspanin 8 gene expression—A potential new mechanism in the pathogenesis of bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 740-750.	1.7	6
20	Reduced aggression, social impairments, and cognitive inflexibility in neuronal nitric oxide (Nos1) knockdown mice. European Neuropsychopharmacology, 2017, 27, S677-S678.	0.7	0
21	Disrupting protein-protein interactions of neuronal nitric oxide synthase: implications in schizophrenia-related behaviours. European Neuropsychopharmacology, 2017, 27, S887-S888.	0.7	O
22	A tribute to Peter H. Seeburg (8.21.1944–8.22.2016). Neurobiology of Learning and Memory, 2016, 136, A1-A2.	1.9	0
23	Aggression in nonâ€human vertebrates: Genetic mechanisms and molecular pathways. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 603-640.	1.7	38
24	Hippocampal GluA1 expression in Gria1 \hat{a}^2/\hat{a}^2 mice only partially restores spatial memory performance deficits. Neurobiology of Learning and Memory, 2016, 135, 83-90.	1.9	27
25	Interaction of NOS1AP with the NOS-I PDZ domain: Implications for schizophrenia-related alterations in dendritic morphology. European Neuropsychopharmacology, 2016, 26, 741-755.	0.7	29
26	On the role of <i>NOS1</i> ex1fâ€VNTR in ADHD—allelic, subgroup, and metaâ€analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 445-458.	1.7	20
27	The role of $\hat{l}\pm$ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: Central mediators of pathophysiology and antidepressant activity?. Neuroscience and Biobehavioral Reviews, 2015, 52, 193-206.	6.1	77
28	Neuronal nitric oxide synthase (<i><scp>NOS1</scp></i>) and its adaptor, <i><scp>NOS1AP</scp></i> , as a genetic risk factors for psychiatric disorders. Genes, Brain and Behavior, 2015, 14, 46-63.	2.2	90
29	A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Frontiers in Neuroscience, 2014, 8, 257.	2.8	18
30	The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: Further evidence and meta-analysis. European Neuropsychopharmacology, 2014, 24, 65-85.	0.7	38
31	GluA1 and its PDZ-interaction: A role in experience-dependent behavioral plasticity in the forced swim test. Neurobiology of Disease, 2013, 52, 160-167.	4.4	19
32	Circuit mechanisms of GluA1-dependent spatial working memory. Hippocampus, 2013, 23, 1359-1366.	1.9	25
33	Selective breeding for deficient sensorimotor gating is accompanied by increased perseveration in rats. Neuroscience, 2007, 148, 612-622.	2.3	25
34	Disturbed social behavior and motivation in rats selectively bred for deficient sensorimotor gating. Schizophrenia Research, 2007, 97, 250-253.	2.0	27
35	Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory. Frontiers in Neuroscience, 2007, 1, 97-110.	2.8	65
36	Selective Breeding of Reduced Sensorimotor Gating in Wistar Rats. Behavior Genetics, 2007, 37, 706-712.	2.1	35

#	Article	IF	CITATIONS
37	Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats. Neuroscience Letters, 2004, 370, 114-117.	2.1	48