## **Catherine M Aitchison**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869156/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Conjugated nanomaterials for solar fuel production. Nanoscale, 2021, 13, 634-646.                                                                                                                    | 2.8  | 21        |
| 2  | Impact of Chemical Structure on the Dynamics of Mass Transfer of Water in Conjugated Microporous<br>Polymers: A Neutron Spectroscopy Study. ACS Applied Polymer Materials, 2021, 3, 765-776.         | 2.0  | 5         |
| 3  | Probing Dynamics of Water Mass Transfer in Organic Porous Photocatalyst Water-Splitting Materials<br>by Neutron Spectroscopy. Chemistry of Materials, 2021, 33, 1363-1372.                           | 3.2  | 5         |
| 4  | Photocatalyst Z-scheme system composed of a linear conjugated polymer and BiVO <sub>4</sub> for overall water splitting under visible light. Journal of Materials Chemistry A, 2020, 8, 16283-16290. | 5.2  | 52        |
| 5  | Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic<br>Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.               | 6.6  | 118       |
| 6  | Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756.                                       | 3.7  | 41        |
| 7  | Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature<br>Communications, 2020, 11, 5448.                                                                       | 5.8  | 69        |
| 8  | Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded<br>framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.                                       | 5.2  | 45        |
| 9  | Hydrogen evolution from water using heteroatom substituted fluorene conjugated co-polymers.<br>Journal of Materials Chemistry A, 2020, 8, 8700-8705.                                                 | 5.2  | 47        |
| 10 | Water Oxidation with Cobaltâ€Loaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie,<br>2020, 132, 18854-18859.                                                                          | 1.6  | 16        |
| 11 | Water Oxidation with Cobalt‣oaded Linear Conjugated Polymer Photocatalysts. Angewandte Chemie -<br>International Edition, 2020, 59, 18695-18700.                                                     | 7.2  | 55        |
| 12 | A mobile robotic chemist. Nature, 2020, 583, 237-241.                                                                                                                                                | 13.7 | 645       |
| 13 | Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). Polymer Chemistry, 2019, 10, 5200-5205.                   | 1.9  | 7         |
| 14 | Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2490-2496.                                           | 5.2  | 84        |
| 15 | Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.                                                                                     | 1.6  | 2         |
| 16 | Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.                                                                                      | 1.6  | 5         |
| 17 | Photocatalytic Hydrogen Evolution from Water Using Fluorene and Dibenzothiophene<br>Sulfone-Conjugated Microporous and Linear Polymers. Chemistry of Materials, 2019, 31, 305-313.                   | 3.2  | 173       |
| 18 | Orthogonal Stimuli Trigger Self-Assembly and Phase Transfer of Fell4L4 Cages and Cargoes. Journal of<br>the American Chemical Society, 2018, 140, 16952-16956.                                       | 6.6  | 18        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. Journal of Materials Chemistry A, 2018, 6, 11994-12003.                                                                                | 5.2 | 93        |
| 20 | Subcomponent Exchange Transforms an Fe <sup>II</sup> <sub>4</sub> L <sub>4</sub> Cage from High-<br>to Low-Spin, Switching Guest Release in a Two-Cage System. Journal of the American Chemical Society,<br>2017, 139, 6294-6297. | 6.6 | 64        |