
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7869051/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Levels of Aflatoxin M1 in Breast Milk of Lactating Mothers in Monterrey, Mexico: Exposure and Health<br>Risk Assessment of Newborns. Toxins, 2022, 14, 194.                                                                                                                | 1.5 | 6         |
| 2  | Effects of colostrum in milk on the effectiveness of the pasteurization process and cheese milk quality. Journal of Applied Animal Research, 2022, 50, 246-253.                                                                                                            | 0.4 | 2         |
| 3  | The Effect of Salt Reduction and Partial Substitution of NaCl by KCl on Physicochemical,<br>Microbiological, and Sensorial Characteristics and Consumers' Acceptability of Semi-Hard and Hard<br>Lactose-Free Cow's Milk Cheeses. Frontiers in Nutrition, 2022, 9, 861383. | 1.6 | 5         |
| 4  | Characterization and oxidation stability of spray-dried emulsions with omega-3 oil and buttermilk<br>processed by ultra-high-pressure homogenization (UHPH) LWT - Food Science and Technology, 2022,<br>162, 113493.                                                       | 2.5 | 6         |
| 5  | Ultrahigh-Pressure Homogenization in Dairy Processing: Effects on Quality and Functionality. , 2021, , 315-336.                                                                                                                                                            |     | 1         |
| 6  | Buttermilk as Encapsulating Agent: Effect of Ultra-High-Pressure Homogenization on Chia<br>Oil-in-Water Liquid Emulsion Formulations for Spray Drying. Foods, 2021, 10, 1059.                                                                                              | 1.9 | 16        |
| 7  | Impact of oil phase concentration on physical and oxidative stability of oil-in-water emulsions<br>stabilized by sodium caseinate and ultra-high pressure homogenization. Journal of Dispersion Science<br>and Technology, 2020, 42, 46-57.                                | 1.3 | 3         |
| 8  | Inline control of yoghurt fermentation process using a near infrared light backscatter sensor.<br>Journal of Food Engineering, 2020, 277, 109885.                                                                                                                          | 2.7 | 10        |
| 9  | Aflatoxin M1 Determination in Infant Formulae Distributed in Monterrey, Mexico. Toxins, 2020, 12, 100.                                                                                                                                                                     | 1.5 | 21        |
| 10 | Effect of ultra-high pressure homogenisation of cream on the physicochemical and sensorial<br>characteristics of fat-reduced starter-free fresh cheeses. LWT - Food Science and Technology, 2019,<br>110, 292-298.                                                         | 2.5 | 11        |
| 11 | Production of food bioactive-loaded nanostructures by high-pressure homogenization. , 2019, , 251-340.                                                                                                                                                                     |     | 2         |
| 12 | Modelling gelation and cutting times using light backscatter parameters at different levels of inulin, protein and calcium. LWT - Food Science and Technology, 2018, 91, 505-510.                                                                                          | 2.5 | 5         |
| 13 | Monitoring the effect of inulin, protein, and calcium on milk coagulation phases using a fibre optic sensor. International Dairy Journal, 2018, 81, 80-86.                                                                                                                 | 1.5 | 11        |
| 14 | Effect of ultra-high pressure homogenization on cream: Shelf life and physicochemical characteristics. LWT - Food Science and Technology, 2018, 92, 108-115.                                                                                                               | 2.5 | 23        |
| 15 | Microbiological stabilization of tiger nuts' milk beverage using ultra-high pressure homogenization.<br>A preliminary study on microbial shelf-life extension. Food Microbiology, 2018, 69, 143-150.                                                                       | 2.1 | 58        |
| 16 | Aflatoxin M <sub>1</sub> occurrence in fluid milk commercialized in Monterrey, Mexico. Journal of Food Safety, 2018, 38, e12507.                                                                                                                                           | 1.1 | 11        |
| 17 | High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese.<br>Food Microbiology, 2018, 76, 481-486.                                                                                                                             | 2.1 | 33        |
| 18 | Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of<br>tiger nuts' milk beverage. Innovative Food Science and Emerging Technologies, 2017, 40, 42-51.                                                                     | 2.7 | 49        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Physicochemical and sensory characteristics of a UHT milk-based product enriched with conjugated<br>linoleic acid emulsified by Ultra-High Pressure Homogenization. Innovative Food Science and Emerging<br>Technologies, 2017, 39, 275-283.                                            | 2.7 | 12        |
| 20 | Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein<br>concentration and pressure on emulsions structure and stability. LWT - Food Science and Technology,<br>2017, 76, 57-66.                                                                 | 2.5 | 45        |
| 21 | Enhanced stability of emulsions treated by Ultra-High Pressure Homogenization for delivering conjugated linoleic acid in Caco-2 cells. Food Hydrocolloids, 2017, 71, 271-281.                                                                                                           | 5.6 | 14        |
| 22 | Characterization of Whey Protein Oil-In-Water Emulsions with Different Oil Concentrations Stabilized by Ultra-High Pressure Homogenization. Processes, 2017, 5, 6.                                                                                                                      | 1.3 | 36        |
| 23 | Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. Food Chemistry, 2016, 209, 104-113.                                                                                                             | 4.2 | 69        |
| 24 | Proteolysis of cheese made from goat milk treated by ultra high pressure homogenisation. LWT - Food<br>Science and Technology, 2016, 69, 17-23.                                                                                                                                         | 2.5 | 27        |
| 25 | Vegetable protein isolate-stabilized emulsions for enhanced delivery of conjugated linoleic acid in<br>Caco-2 cells. Food Hydrocolloids, 2016, 55, 144-154.                                                                                                                             | 5.6 | 55        |
| 26 | Horchata. , 2016, , 345-356.                                                                                                                                                                                                                                                            |     | 0         |
| 27 | Effect Of Ultra High-Pressure Homogenization on hydro- and liposoluble milk vitamins. Food Research<br>International, 2015, 77, 49-54.                                                                                                                                                  | 2.9 | 30        |
| 28 | Characterization and comparison of tiger nuts ( Cyperus esculentus L.) from different geographical origin. Industrial Crops and Products, 2015, 65, 406-414.                                                                                                                            | 2.5 | 56        |
| 29 | Compositional and biochemical changes during cold storage of starter-free fresh cheeses made from ultra-high-pressure homogenised milk. Food Chemistry, 2015, 176, 433-440.                                                                                                             | 4.2 | 12        |
| 30 | Predicting coagulation and syneresis parameters of milk gels when inulin is added as fat substitute using infrared light backscatter. Journal of Food Engineering, 2015, 157, 63-69.                                                                                                    | 2.7 | 19        |
| 31 | Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International, 2015, 75, 357-366.                                                                                                                     | 2.9 | 89        |
| 32 | Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science and Emerging Technologies, 2015, 32, 79-90. | 2.7 | 96        |
| 33 | Lipolysis of cheeses made from goat milk treated by ultra-high pressure homogenization. LWT - Food<br>Science and Technology, 2015, 60, 1034-1038.                                                                                                                                      | 2.5 | 16        |
| 34 | Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization. Food<br>Microbiology, 2014, 44, 204-210.                                                                                                                                                      | 2.1 | 60        |
| 35 | Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk. Journal of Dairy Science, 2014, 97, 659-671.                                                                                             | 1.4 | 66        |
| 36 | Commercial application of high-pressure processing for increasing starter-free fresh cheese shelf-life. LWT - Food Science and Technology, 2014, 55, 498-505.                                                                                                                           | 2.5 | 37        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of high pressure processing on volatile compound profile of a starter-free fresh cheese.<br>Innovative Food Science and Emerging Technologies, 2013, 19, 73-78.                                                                                              | 2.7 | 7         |
| 38 | Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation,<br>and syneresis of milk gels. Journal of Dairy Science, 2013, 96, 1984-1996.                                                                                | 1.4 | 33        |
| 39 | Effect of inulin addition on the sensorial properties of reducedâ€fat fresh cheese. International<br>Journal of Dairy Technology, 2013, 66, 478-483.                                                                                                                | 1.3 | 19        |
| 40 | Ultra-high pressure homogenisation of milk: technological aspects of cheese-making and microbial shelf life of a starter-free fresh cheese. Journal of Dairy Research, 2012, 79, 168-175.                                                                           | 0.7 | 22        |
| 41 | Effect of fat content and homogenization under conventional or ultra-high-pressure conditions on interactions between proteins in rennet curds. Journal of Dairy Science, 2012, 95, 4796-4803.                                                                      | 1.4 | 27        |
| 42 | Changes in the surface protein of the fat globules during ultra-high pressure homogenisation and conventional treatments of milk. Food Hydrocolloids, 2012, 29, 135-143.                                                                                            | 5.6 | 76        |
| 43 | Interrelationships between somatic cell counts, lactation stage and lactation number and their<br>influence on plasmin activity and protein fraction distribution in dromedary (Camelus dromedaries)<br>and cow milks. Small Ruminant Research, 2012, 105, 300-307. | 0.6 | 14        |
| 44 | Effect of high pressure on fresh cheese shelf-life. Journal of Food Engineering, 2012, 110, 248-253.                                                                                                                                                                | 2.7 | 41        |
| 45 | Effect of ultra-high pressure homogenisation of milk on the texture and water-typology of a starter-free fresh cheese. Innovative Food Science and Emerging Technologies, 2011, 12, 484-490.                                                                        | 2.7 | 24        |
| 46 | Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. Journal of Dairy Science, 2010, 93, 1412-1419.                                                                    | 1.4 | 18        |
| 47 | Protein composition of caprine milk fat globule membrane. Small Ruminant Research, 2009, 82, 122-129.                                                                                                                                                               | 0.6 | 21        |
| 48 | Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocolloids, 2009, 23, 82-91.                                                                                         | 5.6 | 83        |
| 49 | Soymilk treated by ultra high-pressure homogenization: Acid coagulation properties and characteristics of a soy-yogurt product. Food Hydrocolloids, 2009, 23, 490-496.                                                                                              | 5.6 | 86        |
| 50 | Heat damage evaluation in ultra-high pressure homogenized milk. Food Hydrocolloids, 2009, 23,<br>1974-1979.                                                                                                                                                         | 5.6 | 58        |
| 51 | Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. Journal of Food Engineering, 2009, 92, 63-69.                                                                                                              | 2.7 | 53        |
| 52 | Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. International Dairy Journal, 2009, 19, 100-106.                                                                                                          | 1.5 | 63        |
| 53 | Effect of the inclusion of whole citrus in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. Journal of Dairy Science, 2009, 92, 469-476.                                                                          | 1.4 | 14        |
| 54 | Proteolysis of yogurts made from ultra-high-pressure homogenized milk during cold storage. Journal<br>of Dairy Science, 2009, 92, 71-78.                                                                                                                            | 1.4 | 28        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Quantification of lipolysis and lipid oxidation during cold storage of yogurts produced from milk<br>treated by ultra-high pressure homogenization. Journal of Food Engineering, 2008, 89, 99-104.    | 2.7 | 39        |
| 56 | Proteolysis of ultra-high pressure homogenised treated milk during refrigerated storage. Food Chemistry, 2008, 111, 696-702.                                                                          | 4.2 | 36        |
| 57 | Cheesemaking aptitude of two Spanish dairy ewe breeds: Changes during lactation and relationship between physico-chemical and technological properties. Small Ruminant Research, 2008, 78, 48-55.     | 0.6 | 31        |
| 58 | The effect of high-pressure treatment at 300MPa on ripening of ewes' milk cheese. International Dairy<br>Journal, 2008, 18, 129-138.                                                                  | 1.5 | 44        |
| 59 | Characterization of volatile compounds in ultra-high-pressure homogenized milk. International Dairy<br>Journal, 2008, 18, 826-834.                                                                    | 1.5 | 76        |
| 60 | Effects of Ultra-High-Pressure Homogenization Treatment on the Lipolysis and Lipid Oxidation of Milk<br>during Refrigerated Storage. Journal of Agricultural and Food Chemistry, 2008, 56, 7125-7130. | 2.4 | 54        |
| 61 | Ultra-High Pressure Homogenization-Induced Changes in Skim Milk: Impact on Acid Coagulation<br>Properties. Journal of Dairy Research, 2008, 75, 69-75.                                                | 0.7 | 42        |
| 62 | Effects of high-pressure treatment on free fatty acids release during ripening of ewes' milk cheese.<br>Journal of Dairy Research, 2007, 74, 438-445.                                                 | 0.7 | 15        |
| 63 | Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Research International, 2007, 40, 725-732.                                  | 2.9 | 198       |
| 64 | Rheological, textural and sensory characteristics of high-pressure treated semi-hard ewes' milk<br>cheese. International Dairy Journal, 2007, 17, 248-254.                                            | 1.5 | 45        |
| 65 | Acid coagulation properties and suitability for yogurt production of cows' milk treated by high-pressure homogenisation. International Dairy Journal, 2007, 17, 782-790.                              | 1.5 | 78        |
| 66 | Effects of High Pressure on Proteolytic Enzymes in Cheese: Relationship with the Proteolysis of Ewe<br>Milk Cheese. Journal of Dairy Science, 2007, 90, 2113-2125.                                    | 1.4 | 49        |
| 67 | Effects of Ultra-High Pressure Homogenization on Microbial and Physicochemical Shelf Life of Milk.<br>Journal of Dairy Science, 2007, 90, 1081-1093.                                                  | 1.4 | 180       |
| 68 | Effects of Ultra-High Pressure Homogenization on the Cheese-Making Properties of Milk. Journal of<br>Dairy Science, 2007, 90, 13-23.                                                                  | 1.4 | 112       |
| 69 | Changes in the Volatile Composition of a Semihard Ewe Milk Cheese Induced by High-Pressure<br>Treatment of 300 MPa. Journal of Agricultural and Food Chemistry, 2007, 55, 747-754.                    | 2.4 | 15        |
| 70 | Effect of Heat and High-Pressure Treatments on Microbiological Quality and Immunoglobulin G<br>Stability of Caprine Colostrum. Journal of Dairy Science, 2007, 90, 833-839.                           | 1.4 | 47        |
| 71 | Effects of High Pressure Treatment on Volatile Profile During Ripening of Ewe Milk Cheese. Journal of<br>Dairy Science, 2007, 90, 124-135.                                                            | 1.4 | 23        |
| 72 | Effect of heat treatment on lactoperoxidase activity in caprine milk. Small Ruminant Research, 2007, 67, 243-246.                                                                                     | 0.6 | 12        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Specific effect of high-pressure treatment of milk on cheese proteolysis. Journal of Dairy Research, 2005, 72, 385-392.                                                                                                           | 0.7 | 17        |
| 74 | Changes in organic acids during ripening of cheeses made from raw, pasteurized or<br>high-pressure-treated goats' milk. LWT - Food Science and Technology, 2004, 37, 247-253.                                                     | 2.5 | 65        |
| 75 | Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. Journal of Dairy Research, 2004, 71, 245-252.                                                           | 0.7 | 89        |
| 76 | Inactivation of Spores of Bacillus cereus in Cheese by High Hydrostatic Pressure with the Addition of Nisin or Lysozyme. Journal of Dairy Science, 2003, 86, 3075-3081.                                                           | 1.4 | 115       |
| 77 | Evaluation of the importance of germinative cycles for destruction ofbacillus cereusspores in miniature cheeses. High Pressure Research, 2003, 23, 81-85.                                                                         | 0.4 | 9         |
| 78 | Changes in water binding during ripening of cheeses made from raw, pasteurized or high-pressure-treated goat milk. Dairy Science and Technology, 2003, 83, 89-96.                                                                 | 0.9 | 12        |
| 79 | Applications of High-Hydrostatic Pressure on Milk and Dairy Products. High Pressure Research, 2002, 22, 619-626.                                                                                                                  | 0.4 | 11        |
| 80 | Effects of High-Pressure Treatment on the Sensory Quality of White Grape Juice. High Pressure Research, 2002, 22, 705-709.                                                                                                        | 0.4 | 44        |
| 81 | Applications of high-hydrostatic pressure on milk and dairy products: a review. Innovative Food<br>Science and Emerging Technologies, 2002, 3, 295-307.                                                                           | 2.7 | 186       |
| 82 | Proteolysis in goat cheese made from raw, pasteurized or pressure-treated milk. Innovative Food<br>Science and Emerging Technologies, 2002, 3, 309-319.                                                                           | 2.7 | 29        |
| 83 | Lipolysis in cheese made from raw, pasteurized or high-pressure-treated goats' milk. International<br>Dairy Journal, 2001, 11, 175-179.                                                                                           | 1.5 | 81        |
| 84 | Changes in textural, microstructural, and colour characteristics during ripening of cheeses made<br>from raw, pasteurized or high-pressure-treated goats' milk. International Dairy Journal, 2001, 11,<br>927-934.                | 1.5 | 117       |
| 85 | Microbiological changes throughout ripening of goat cheese made from raw, pasteurized and high-pressure-treated milk. Food Microbiology, 2001, 18, 45-51.                                                                         | 2.1 | 60        |
| 86 | Analysis of major ovine milk proteins by reversed-phase high-performance liquid chromatography and<br>flow injection analysis with electrospray ionization mass spectrometry. Journal of Chromatography<br>A, 2000, 870, 371-380. | 1.8 | 29        |
| 87 | Proteolytic activities of some milk clotting enzymes on ovine casein. Food Chemistry, 2000, 71, 449-457.                                                                                                                          | 4.2 | 28        |
| 88 | A procedure for the manufacture of goat milk cheese with controlled-microflora by means of high hydrostatic pressure. Food Chemistry, 2000, 69, 73-79.                                                                            | 4.2 | 20        |
| 89 | Ripening control of salt-reduced Manchego-type cheese obtained by brine vacuum-impregnation. Food<br>Chemistry, 2000, 70, 155-162.                                                                                                | 4.2 | 16        |
| 90 | Effectiveness of High-Pressure Brining of Manchego-type Cheese. LWT - Food Science and Technology, 2000, 33, 401-403.                                                                                                             | 2.5 | 12        |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Analysis of Major Caprine Milk Proteins by Reverse-Phase High-Performance Liquid Chromatography and Electrospray Ionization-Mass Spectrometry. Journal of Dairy Science, 2000, 83, 11-19.                                                                                   | 1.4 | 30        |
| 92  | Proteolysis in Manchego-Type Cheese Salted by Brine Vacuum Impregnation. Journal of Dairy Science, 2000, 83, 1441-1447.                                                                                                                                                     | 1.4 | 31        |
| 93  | Application of high pressure treatment for cheese production. Food Research International, 2000, 33, 311-316.                                                                                                                                                               | 2.9 | 85        |
| 94  | Free fatty acid content of Manchego-type cheese salted by brine vacuum impregnation. International<br>Dairy Journal, 2000, 10, 563-568.                                                                                                                                     | 1.5 | 20        |
| 95  | Ripening Profiles of Goat Cheese Produced from Milk Treated with High Pressure. Journal of Food<br>Science, 1999, 64, 833-837.                                                                                                                                              | 1.5 | 43        |
| 96  | Changes in microstructural, textural and colour characteristics during ripening of Manchego-type cheese salted by brine vacuum impregnation. International Dairy Journal, 1999, 9, 91-98.                                                                                   | 1.5 | 39        |
| 97  | Revisión: E1 polimorfismo del gen de la caseina αs1 caprina y su efecto sobre la producción, la<br>composición y las propiedades tecnológicas de la leche y sobre la fabricación y la maduración del<br>queso. Food Science and Technology International, 1998, 4, 217-235. | 1.1 | 10        |
| 98  | Proteolytic specificity of chymosin on caprine αs1-caseins A and F. Journal of Dairy Research, 1998, 65, 233-241.                                                                                                                                                           | 0.7 | 12        |
| 99  | Ripening control of Manchego type cheese salted by brine vacuum impregnation. International Dairy<br>Journal, 1997, 7, 185-192.                                                                                                                                             | 1.5 | 36        |
| 100 | Proteolysis of goat casein by calf rennet. International Dairy Journal, 1997, 7, 579-588.                                                                                                                                                                                   | 1.5 | 26        |
| 101 | Hydrolysis of Caprine β-Casein by Plasmin. Journal of Dairy Science, 1997, 80, 2258-2263.                                                                                                                                                                                   | 1.4 | 30        |
| 102 | Proteolysis Of Goat .betaCasein by Calf Rennet under Various Factors Affecting the Cheese Ripening<br>Process. Journal of Agricultural and Food Chemistry, 1995, 43, 1472-1478.                                                                                             | 2.4 | 21        |
| 103 | Electrophoretic Study of Casein Breakdown during Ripening of Goat's Milk Cheese. Journal of<br>Agricultural and Food Chemistry, 1994, 42, 1546-1550.                                                                                                                        | 2.4 | 29        |