List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7868689/publications.pdf Version: 2024-02-01

Хилисния Гг

#	Article	IF	CITATIONS
1	Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40, 761-767.	21.4	1,666
2	Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12987-12992.	7.1	1,371
3	Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43, 1266-1269.	21.4	821
4	Activation of the Indole-3-Acetic Acid–Amido Synthetase GH3-8 Suppresses Expansin Expression and Promotes Salicylate- and Jasmonate-Independent Basal Immunity in Rice. Plant Cell, 2008, 20, 228-240.	6.6	513
5	Xa26, a gene conferring resistance toXanthomonas oryzaepv.oryzaein rice, encodes an LRR receptor kinase-like protein. Plant Journal, 2004, 37, 517-527.	5.7	446
6	OsWRKY13 Mediates Rice Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. Molecular Plant-Microbe Interactions, 2007, 20, 492-499.	2.6	409
7	A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 2015, 66, 6803-6817.	4.8	353
8	A Raf-Like MAPKKK Gene <i>DSM1</i> Mediates Drought Resistance through Reactive Oxygen Species Scavenging in Rice Â. Plant Physiology, 2010, 152, 876-890.	4.8	340
9	Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 2009, 71, 291-305.	3.9	336
10	Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice Â. Plant Physiology, 2012, 158, 1755-1768.	4.8	305
11	Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 2014, 46, 398-404.	21.4	281
12	A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science, 2012, 337, 1336-1340.	12.6	263
13	A triallelic system of <i>S5</i> is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11436-11441.	7.1	257
14	A Pair of Allelic WRKY Genes Play Opposite Roles in Rice-Bacteria Interactions Â. Plant Physiology, 2009, 151, 936-948.	4.8	251
15	<i>PMS1T</i> , producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15144-15149.	7.1	234
16	Coordinated regulation of vegetative and reproductive branching in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15504-15509.	7.1	218
17	The Bacterial Pathogen <i>Xanthomonas oryzae</i> Overcomes Rice Defenses by Regulating Host Copper Redistribution Â. Plant Cell, 2010, 22, 3164-3176.	6.6	214
18	OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5, 4847.	12.8	214

#	Article	IF	CITATIONS
19	A paralog of the MtN3/saliva family recessively confers raceâ€specific resistance to <i>Xanthomonas oryzae</i> in rice. Plant, Cell and Environment, 2011, 34, 1958-1969.	5.7	213
20	A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods, 2012, 8, 2.	4.3	199
21	<i>Grain Number</i> , <i>Plant Height</i> , <i>and Heading Date7</i> Is a Central Regulator of Growth, Development, and Stress Response Â. Plant Physiology, 2014, 164, 735-747.	4.8	198
22	A C-protein pathway determines grain size in rice. Nature Communications, 2018, 9, 851.	12.8	195
23	Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Molecular Breeding, 2006, 18, 1-10.	2.1	192
24	Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants, 2017, 3, 17009.	9.3	179
25	Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5411-9.	7.1	165
26	Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theoretical and Applied Genetics, 2006, 113, 1347-1355.	3.6	161
27	A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice <i>Protein Phosphatase18</i> Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice Â. Plant Physiology, 2014, 166, 2100-2114.	4.8	142
28	New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genomeâ€wide association analysis. Plant, Cell and Environment, 2016, 39, 556-570.	5.7	141
29	MODD Mediates Deactivation and Degradation of OsbZIP46 to Negatively Regulate ABA Signaling and Drought Resistance in Rice. Plant Cell, 2016, 28, 2161-2177.	6.6	140
30	The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing <i>β</i> -Amylase Expression. Plant Physiology, 2017, 173, 1475-1491.	4.8	136
31	The Expression Pattern of a Rice Disease Resistance Gene <i>Xa3/Xa26</i> Is Differentially Regulated by the Genetic Backgrounds and Developmental Stages That Influence Its Function. Genetics, 2007, 177, 523-533.	2.9	133
32	Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13, a Positive Regulator of Disease Resistance. Molecular Plant, 2008, 1, 538-551.	8.3	131
33	The WRKY45-2 WRKY13 WRKY42 Transcriptional Regulatory Cascade Is Required for Rice Resistance to Fungal Pathogen Â. Plant Physiology, 2015, 167, 1087-1099.	4.8	126
34	A CCCH-Type Zinc Finger Nucleic Acid-Binding Protein Quantitatively Confers Resistance against Rice Bacterial Blight Disease. Plant Physiology, 2012, 158, 876-889.	4.8	122
35	MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant Journal, 2017, 92, 557-570.	5.7	122
36	Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015, 66, 2611-2623.	4.8	119

#	Article	IF	CITATIONS
37	OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant, Cell and Environment, 2011, 34, 179-191.	5.7	117
38	A Rice Gene of De Novo Origin Negatively Regulates Pathogen-Induced Defense Response. PLoS ONE, 2009, 4, e4603.	2.5	114
39	Integrative Regulation of Drought Escape through ABA-Dependent and -Independent Pathways inÂRice. Molecular Plant, 2018, 11, 584-597.	8.3	112
40	A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. ELife, 2016, 5, .	6.0	108
41	Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genetics, 2017, 13, e1006889.	3.5	107
42	Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements Â. Plant Physiology, 2013, 163, 1868-1882.	4.8	106
43	Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta, 2007, 226, 953-960.	3.2	100
44	Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant Journal, 2010, 64, no-no.	5.7	94
45	Dual Function of Rice OsDR8 Gene in Disease Resistance and Thiamine Accumulation. Plant Molecular Biology, 2006, 60, 437-449.	3.9	92
46	Pathogen-Induced Expressional Loss of Function is the Key Factor in Race-Specific Bacterial Resistance Conferred by a Recessive R Gene xa13 in Rice. Plant and Cell Physiology, 2009, 50, 947-955.	3.1	90
47	Overexpression of OsSWEET5 in Rice Causes Growth Retardation and Precocious Senescence. PLoS ONE, 2014, 9, e94210.	2.5	84
48	<i>Ghd2,</i> a <i>CONSTANS</i> -like gene, confers drought sensitivity through regulation of senescence in rice. Journal of Experimental Botany, 2016, 67, 5785-5798.	4.8	82
49	Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nature Plants, 2016, 2, 16016.	9.3	79
50	The QTL controlling amino acid content in grains of rice (Oryza sativa) are co-localized with the regions involved in the amino acid metabolism pathway. Molecular Breeding, 2007, 21, 127-137.	2.1	69
51	Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Molecular Plant, 2017, 10, 634-644.	8.3	66
52	Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region. Nature Communications, 2017, 8, 14651.	12.8	65
53	The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice. Plant Cell, 2015, 27, 2455-2468.	6.6	58
54	Rice <scp>O</scp> s <i><scp>PAD</scp>4</i> functions differently from <scp>A</scp> rabidopsis <scp>A</scp> t <i><scp>PAD</scp>4</i> in hostâ€pathogen interactions. Plant Journal, 2014, 78, 619-631.	5.7	54

#	Article	IF	CITATIONS
55	Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis. Frontiers in Plant Science, 2018, 9, 612.	3.6	53
56	Reversible Histone H2B Monoubiquitination Fine-Tunes Abscisic Acid Signaling and Drought Response in Rice. Molecular Plant, 2019, 12, 263-277.	8.3	53
57	<i>OsHOX1</i> and <i>OsHOX28</i> Redundantly Shape Rice Tiller Angle by Reducing <i>HSFA2D</i> Expression and Auxin Content. Plant Physiology, 2020, 184, 1424-1437.	4.8	44
58	The origin of <i>Wx</i> ^{<i>la</i>} provides new insights into the improvement of grain quality in rice. Journal of Integrative Plant Biology, 2021, 63, 878-888.	8.5	43
59	Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonas oryzae pv. oryzae. Theoretical and Applied Genetics, 2007, 115, 887-895.	3.6	41
60	Natural variation in <i>WHITE-CORE RATE 1</i> regulates redox homeostasis in rice endosperm to affect grain quality. Plant Cell, 2022, 34, 1912-1932.	6.6	41
61	Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theoretical and Applied Genetics, 2009, 119, 231-239.	3.6	38
62	Transcriptome-based analysis of mitogen-activated protein kinase cascades in the rice response to Xanthomonas oryzae infection. Rice, 2015, 8, 4.	4.0	36
63	Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Molecular Plant, 2021, 14, 1168-1184.	8.3	35
64	Three representative inter and intraâ€subspecific crosses reveal the genetic architecture of reproductive isolation in rice. Plant Journal, 2017, 92, 349-362.	5.7	33
65	Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica, 2011, 180, 261-271.	1.2	28
66	A Cytosolic Triosephosphate Isomerase Is a Key Component in XA3/XA26-Mediated Resistance. Plant Physiology, 2018, 178, 923-935.	4.8	28
67	Multiple Alleles Encoding Atypical NLRs with Unique Central Tandem Repeats in Rice Confer Resistance to Xanthomonas oryzae pv. oryzae. Plant Communications, 2020, 1, 100088.	7.7	28
68	Transcriptomic analysis of rice responses to low phosphorus stress. Science Bulletin, 2010, 55, 251-258.	1.7	25
69	Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. Rice, 2019, 12, 25.	4.0	25
70	A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Frontiers in Plant Science, 2017, 8, 1919.	3.6	23
71	Processes Underlying a Reproductive Barrier in <i>indica</i> - <i>japonica</i> Rice Hybrids Revealed by Transcriptome Analysis. Plant Physiology, 2017, 174, 1683-1696.	4.8	22
72	Two VQ Proteins are Substrates of the OsMPKK6-OsMPK4 Cascade in Rice Defense Against Bacterial Blight. Rice, 2021, 14, 39.	4.0	22

#	Article	IF	CITATIONS
73	Characterization of a disease susceptibility locus for exploring an efficient way to improve rice resistance against bacterial blight. Science China Life Sciences, 2017, 60, 298-306.	4.9	21
74	Small RNAs and Gene Network in a Durable Disease Resistance Gene—Mediated Defense Responses in Rice. PLoS ONE, 2015, 10, e0137360.	2.5	20
75	A laminâ€like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. New Phytologist, 2020, 227, 65-83.	7.3	20
76	The group I GH3 family genes encoding JA-lle synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochemical and Biophysical Research Communications, 2019, 508, 1062-1066.	2.1	19
77	Origination and Establishment of a Trigenic Reproductive Isolation System in Rice. Molecular Plant, 2016, 9, 1542-1545.	8.3	18
78	OsTMF attenuates cold tolerance by affecting cell wall properties in rice. New Phytologist, 2020, 227, 498-512.	7.3	18
79	Genetic architecture and key genes controlling the diversity of oil composition in rice grains. Molecular Plant, 2021, 14, 456-469.	8.3	18
80	Identification of genes contributing to quantitative disease resistance in rice. Science China Life Sciences, 2010, 53, 1263-1273.	4.9	17
81	The rice Rafâ€like MAPKKK OsILA1 confers broadâ€spectrum resistance to bacterial blight by suppressing the OsMAPKK4–OsMAPK6 cascade. Journal of Integrative Plant Biology, 2021, 63, 1815-1842.	8.5	16
82	Comparison of quantitative trait loci for 1,000-grain weight and spikelets per panicle across three connected rice populations. Euphytica, 2010, 175, 383-394.	1.2	15
83	Os <scp>ARID</scp> 3, an <scp>AT</scp> â€rich Interaction Domainâ€containing protein, is required for shoot meristem development in rice. Plant Journal, 2015, 83, 806-817.	5.7	15
84	Exploring the mechanism and efficient use of a durable gene-mediated resistance to bacterial blight disease in rice. Molecular Breeding, 2018, 38, 1.	2.1	14
85	Dominant and Recessive Major R Genes Lead to Different Types of Host Cell Death During Resistance to Xanthomonas oryzae in Rice. Frontiers in Plant Science, 2018, 9, 1711.	3.6	13
86	A MITE variationâ€associated heatâ€inducible isoform of a heatâ€shock factor confers heat tolerance through regulation of <i>JASMONATE ZIMâ€DOMAIN</i> genes in rice. New Phytologist, 2022, 234, 1315-1331.	7.3	13
87	Two Different Transcripts of a LAMMER Kinase Gene Play Opposite Roles in Disease Resistance. Plant Physiology, 2016, 172, 1959-1972.	4.8	12
88	Artificial Selection in Domestication and Breeding Prevents Speciation in Rice. Molecular Plant, 2020, 13, 650-657.	8.3	12
89	Hd3a and OsFD1 negatively regulate rice resistance to Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Biochemical and Biophysical Research Communications, 2019, 513, 775-780.	2.1	10
90	Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26-Mediated Resistance to Xanthomonas oryzae pv. oryzae. International Journal of Molecular Sciences, 2020, 21, 194.	4.1	10

#	Article	IF	CITATIONS
91	Different Cell Wall-Degradation Ability Leads to Tissue-Specificity between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Pathogens, 2020, 9, 187.	2.8	10
92	FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice. Molecular Breeding, 2021, 41, 1.	2.1	10
93	The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Science, 2019, 284, 48-56.	3.6	8
94	Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family. Journal of Integrative Plant Biology, 2007, 49, 852-862.	8.5	7
95	Up- and Down-regulated Expression of OsCPK25/26 Results in Increased Number of Stamens in Rice. Plant Molecular Biology Reporter, 2014, 32, 1114-1128.	1.8	7
96	OsVQ1 links rice immunity and flowering via interaction with a mitogen-activated protein kinase OsMPK6. Plant Cell Reports, 2021, 40, 1989-1999.	5.6	7
97	Overexpression a "fruit-weight 2.2-like―gene OsFWL5 improves rice resistance. Rice, 2019, 12, 51.	4.0	5
98	Fine mapping of qWCR7, a grain chalkiness QTL in rice. Molecular Breeding, 2021, 41, 1.	2.1	3
99	Fine Mapping of qWCR4, a Rice Chalkiness QTL Affecting Yield and Quality. Agronomy, 2022, 12, 706.	3.0	3
100	Rapid genome evolution in Pms1 region of rice revealed by comparative sequence analysis. Science Bulletin, 2007, 52, 912-921.	1.7	2