Vikalp Mishra ## List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/7868687/vikalp-mishra-publications-by-year.pdf Version: 2024-04-28 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 128168paperscitationsh-indexg-index1212652.86ext. papersext. citationsavg, IFL-index | # | Paper | IF | Citations | |----|--|------------|-----------| | 12 | Analysis of a Short-Term and a Seasonal Precipitation Forecast over Kenya. <i>Atmosphere</i> , 2021 , 12, 1371 | 2.7 | O | | 11 | Detecting Desert Locust Breeding Grounds: A Satellite-Assisted Modeling Approach. <i>Remote Sensing</i> , 2021 , 13, 1276 | 5 | 7 | | 10 | Assimilation of coupled microwave/thermal infrared soil moisture profiles into a crop model for robust maize yield estimates over Southeast United States. <i>European Journal of Agronomy</i> , 2021 , 123, 126208 | 5 | 5 | | 9 | Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand. <i>Aerosol and Air Quality Research</i> , 2021 , 21, 210105 | 4.6 | 3 | | 8 | Evaluating the impacts of drought on rice productivity over Cambodia in the Lower Mekong Basin.
Journal of Hydrology, 2021 , 599, 126291 | 6 | 2 | | 7 | Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019\(\mathbb{Q}\)021 Desert Locust Upsurge. Frontiers in Climate, 2021, 3, | 7.1 | 1 | | 6 | Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2020 , 93, 102218 | 7.3 | 10 | | 5 | Performance evaluation of soil moisture profile estimation through entropy-based and exponential filter models. <i>Hydrological Sciences Journal</i> , 2020 , 65, 1036-1048 | 3.5 | 7 | | 4 | An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States. <i>International Journal of Applied Earth Observation and Geoinformation</i> , 2018 , 68, 92-104 | 7.3 | 17 | | 3 | Development of soil moisture profiles through coupled microwavelhermal infrared observations in the southeastern United States. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 4935-4957 | 5.5 | 6 | | 2 | Modeling Soil Moisture Profiles in Irrigated Fields by the Principle of Maximum Entropy. <i>Entropy</i> , 2015 , 17, 4454-4484 | 2.8 | 6 | | 1 | A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields. <i>Remote Sensing</i> , 2013 , 5, 3331-335 | 5 6 | 17 |