
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7868299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced production of butyl acetate via methanol-extracting transesterification membrane reactors using organosilica membrane: Experiment and modeling. Chemical Engineering Journal, 2022, 429, 132188.	6.6	11
2	Structural two-phase evolution of aminosilica-based silver-coordinated membranes for increased hydrogen separation. Journal of Membrane Science, 2022, 642, 119962.	4.1	11
3	Enhancement of the H2-permselectivity of a silica-zirconia composite membrane enabled by ligand-ceramic to carbon-ceramic transformation. Journal of Membrane Science, 2022, 642, 119948.	4.1	6
4	Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes. Journal of Membrane Science, 2022, 643, 120018.	4.1	12
5	Ultrahigh permeation of CO2 capture using composite organosilica membranes. Separation and Purification Technology, 2022, 282, 120061.	3.9	11
6	Effect of fluorine doping on the network pore structure of non-porous organosilica bis(triethoxysilyl)propane (BTESP) membranes for use in molecular separation. Journal of Membrane Science, 2022, 644, 120083.	4.1	3
7	Development of PSQ-RO membranes with high water permeability by copolymerization of bis[3-(triethoxysilyl)propyl]amine and triethoxy(3-glycidyloxypropyl)silane. Journal of Membrane Science, 2022, 644, 120162.	4.1	8
8	Reverse osmosis and pervaporation of organic liquids using organosilica membranes: Performance analysis and predictions. AICHE Journal, 2022, 68, .	1.8	12
9	Network tailoring of organosilica membranes <i>via</i> aluminum doping to improve the humid-gas separation performance. RSC Advances, 2022, 12, 5834-5846.	1.7	4
10	Open-air plasma deposition of polymer-supported silica-based membranes for gas separation. Separation and Purification Technology, 2022, 291, 120908.	3.9	5
11	Microporous structure control of SiO2-ZrO2 composite membranes via Yttrium doping and an evaluation of thermal stability. Journal of Sol-Gel Science and Technology, 2022, 104, 566-579.	1.1	6
12	Development of Highly Water-Permeable Robust PSQ-Based RO Membranes by Introducing Hydroxyethylurea-Based Hydrophilic Water Channels. ACS Applied Materials & Interfaces, 2022, 14, 21426-21435.	4.0	4
13	Structural transformation of the nickel coordination-induced subnanoporosity of aminosilica membranes for methanol-selective, high-flux pervaporation. Journal of Membrane Science, 2022, 656, 120613.	4.1	10
14	Development of robust and high-performance polysilsesquioxane reverse osmosis membranes modified by SiO2 nanoparticles for water desalination. Separation and Purification Technology, 2022, 296, 121421.	3.9	4
15	Nanogradient Hydrophilic/Hydrophobic Organosilica Membranes Developed by Atmospheric-Pressure Plasma to Enhance Pervaporation Performance. ACS Nano, 2022, 16, 10302-10313.	7.3	12
16	Tailoring the structure of a sub-nano silica network via fluorine doping to enhance CO2 separation and evaluating CO2 separation performance under dry or wet conditions. Journal of Membrane Science, 2022, 658, 120735.	4.1	4
17	Ammonia permeation of fluorinated sulfonic acid polymer/ceramic composite membranes. Journal of Membrane Science, 2022, 658, 120718.	4.1	8
18	Hydrophilic behavior of methyl-terminated organosilica thin films modified by atmospheric-pressure water vapor plasma. Materials Letters, 2022, 325, 132841.	1.3	2

#	Article	IF	CITATIONS
19	Transesterification membrane reactor with organosilica membrane in batch and continuous flow modes. Chemical Engineering Journal, 2022, 450, 137862.	6.6	2
20	Improved performance of organosilica membranes for steam recovery at moderate-to-high temperatures via the use of a hydrothermally stable intermediate layer. Journal of Membrane Science, 2021, 620, 118895.	4.1	13
21	TiO ₂ Coatings Via Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition for Enhancing the UV-Resistant Properties of Transparent Plastics. ACS Omega, 2021, 6, 1370-1377.	1.6	15
22	Facile development of microstructure-engineered, ligand-chelated SiO2–ZrO2 composite membranes for molecular separations. Molecular Systems Design and Engineering, 2021, 6, 429-444.	1.7	2
23	Pervaporation via siliconâ€based membranes: Correlation and prediction of performance in pervaporation and gas permeation. AICHE Journal, 2021, 67, e17223.	1.8	21
24	Hydrocarbon permeation properties through microporous fluorine-doped organosilica membranes with controlled pore sizes. Journal of Membrane Science, 2021, 619, 118787.	4.1	11
25	Multiple Amine-Contained POSS-Functionalized Organosilica Membranes for Gas Separation. Membranes, 2021, 11, 194.	1.4	6
26	Recent Progress in a Membrane-Based Technique for Propylene/Propane Separation. Membranes, 2021, 11, 310.	1.4	19
27	Hydrothermal stability of fluorineâ€induced microporous silica membranes: Effect of steam treatment conditions. AICHE Journal, 2021, 67, e17292.	1.8	7
28	Microporous Nickel-Coordinated Aminosilica Membranes for Improved Pervaporation Performance of Methanol/Toluene Separation. ACS Applied Materials & amp; Interfaces, 2021, 13, 23247-23259.	4.0	23
29	Design of a SiOC network structure with oxidation stability and application to hydrogen separation membranes at high temperatures. Journal of Membrane Science, 2021, 625, 119147.	4.1	6
30	Pore Structure Controllability and CO2 Permeation Properties of Silica-Derived Membranes with a Dual-Network Structure. Industrial & Engineering Chemistry Research, 2021, 60, 8527-8537.	1.8	3
31	Preparation of polysilsesquioxane reverse osmosis membranes for water desalination from tris[(ethoxysilyl)alkyl]amines by sol–gel process and interfacial polymerization. Applied Organometallic Chemistry, 2021, 35, e6374.	1.7	5
32	Effect of the Ti/Zr ratio on the hydrothermal and chemical stability of TiO2-ZrO2 nanofiltration membranes. Separation and Purification Technology, 2021, 274, 119060.	3.9	4
33	Steam recovery via nanoporous and subnanoporous organosilica membranes: The effects of pore structure and operating conditions. Separation and Purification Technology, 2021, 275, 119191.	3.9	5
34	Facile low-temperature route toward the development of polymer-supported silica-based membranes for gas separation via atmospheric-pressure plasma-enhanced chemical vapor deposition. Journal of Membrane Science, 2021, 638, 119709.	4.1	7
35	Controlled organosilica networks via metal doping for improved dehydration membranes with layered hybrid structures. Separation and Purification Technology, 2021, 278, 119561.	3.9	5
36	Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane. Materials Chemistry Frontiers, 2021, 5, 3029-3042.	3.2	16

#	Article	IF	CITATIONS
37	Ultrafast Synthesis of Silica-Based Molecular Sieve Membranes in Dielectric Barrier Discharge at Low Temperature and Atmospheric Pressure. Journal of the American Chemical Society, 2021, 143, 35-40.	6.6	16
38	Atmospheric-pressure PECVD synthesis of polymer-supported molecular sieving silica membranes for gas separation: Effect of pore size of polymeric support. Materials Letters, 2021, , 131211.	1.3	2
39	Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. Journal of Membrane Science, 2020, 595, 117477.	4.1	59
40	Fineâ€ŧuned, molecularâ€composite, organosilica membranes for highly efficient propylene/propane separation via suitable pore size. AICHE Journal, 2020, 66, e16850.	1.8	14
41	Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route. Journal of Membrane Science, 2020, 597, 117758.	4.1	46
42	Development of high-performance sub-nanoporous SiC-based membranes derived from polytitanocarbosilane. Journal of Membrane Science, 2020, 598, 117688.	4.1	24
43	A carbon–silica–zirconia ceramic membrane with CO ₂ flow-switching behaviour promising versatile high-temperature H ₂ /CO ₂ separation. Journal of Materials Chemistry A, 2020, 8, 23563-23573.	5.2	15
44	Evaluation of experimentally obtained permeance based on module simulation: How should permeance be evaluated?. AICHE Journal, 2020, 66, e16250.	1.8	11
45	Filtration of surfactant-stabilized oil-in-water emulsions with porous ceramic membranes: Effects of membrane pore size and surface charge on fouling behavior. Journal of Membrane Science, 2020, 610, 118210.	4.1	42
46	Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling. Journal of Membrane Science, 2020, 610, 118284.	4.1	43
47	Experimental study and modeling of organic solvent reverse osmosis separations through organosilica membranes. AICHE Journal, 2020, 66, e16283.	1.8	11
48	Tuning the microstructure of polycarbosilane-derived SiC(O) separation membranes via thermal-oxidative cross-linking. Separation and Purification Technology, 2020, 248, 117067.	3.9	15
49	Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611, 118328.	4.1	24
50	Highâ€performance molecularâ€separation ceramic membranes derived from oxidative crossâ€linked polytitanocarbosilane. Journal of the American Ceramic Society, 2020, 103, 4473-4488.	1.9	19
51	Pore subnano-environment engineering of organosilica membranes for highly selective propylene/propane separation. Journal of Membrane Science, 2020, 603, 117999.	4.1	15
52	Al2O3 nanofiltration membranes fabricated from nanofiber sols: Preparation, characterization, and performance. Journal of Membrane Science, 2020, 611, 118401.	4.1	18
53	Microstructure evolution and enhanced permeation of SiC membranes derived from allylhydridopolycarbosilane. Journal of Membrane Science, 2020, 612, 118392.	4.1	18
54	Chemical-free cleaning of fouled reverse osmosis (RO) membranes derived from bis(triethoxysilyl)ethane (BTESE). Journal of Membrane Science, 2020, 601, 117919.	4.1	12

#	Article	IF	CITATIONS
55	Pore size tuning of bis(triethoxysilyl)propane (BTESP)-derived membrane for gas separation: Effects of the acid molar ratio in the sol and of the calcination temperature. Separation and Purification Technology, 2020, 242, 116742.	3.9	8
56	Development of an acetylacetonate-modified silica-zirconia composite membrane applicable to gas separation. Journal of Membrane Science, 2020, 599, 117844.	4.1	15
57	Propylene / Propane Permeation Properties for SiO2–derived Membranes with Controlled Microporous Structure via Sol–Gel Method. Membrane, 2020, 45, 275-280.	0.0	0
58	SiC mesoporous membranes for sulfuric acid decomposition at high temperatures in the iodine–sulfur process. RSC Advances, 2020, 10, 41883-41890.	1.7	9
59	TiO2-ZrO2 membranes of controlled pore sizes with different Ti/Zr ratios for nanofiltration. Journal of Sol-Gel Science and Technology, 2019, 92, 12-24.	1.1	8
60	Gas Permeation Properties and Pore Size Evaluation of Microporous Silica Membranes. , 2019, , 101-126.		0
61	Selective water vapor permeation from steam/non-condensable gas mixtures via organosilica membranes at moderate-to-high temperatures. Journal of Membrane Science, 2019, 589, 117254.	4.1	24
62	Vapor-permeation dehydration of isopropanol using a flexible and thin organosilica membrane with high permeance. Journal of Membrane Science, 2019, 588, 117226.	4.1	12
63	Infrared-spectroscopic porosimetry: Development and application for characterization of hundred-nanometer-thick porous thin films. Thin Solid Films, 2019, 685, 299-305.	0.8	0
64	Ceramic-Supported Polyhedral Oligomeric Silsesquioxane–Organosilica Nanocomposite Membrane for Efficient Gas Separation. Industrial & Engineering Chemistry Research, 2019, 58, 21708-21716.	1.8	11
65	Effect of Sintering Temperature on Sol–Gel Synthesis of Porous Polymeric Membrane Supported Layered Hybrid Organosilica Membranes and Their Vapor Permeation Property. Kagaku Kogaku Ronbunshu, 2019, 45, 177-183.	0.1	1
66	Evaluating the chemical stability of metal oxides in SO 3 and applications of SiO 2 â€based membranes to O 2 /SO 3 separation. Journal of the American Ceramic Society, 2019, 102, 6946-6956.	1.9	6
67	Tailoring Ultramicroporosity To Maximize CO ₂ Transport within Pyrimidine-Bridged Organosilica Membranes. ACS Applied Materials & Interfaces, 2019, 11, 7164-7173.	4.0	28
68	Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. Journal of Membrane Science, 2019, 584, 56-65.	4.1	35
69	Free glycerol removal from monoglyceride using TiO2-ZrO2 nanofiltration membranes. Separation and Purification Technology, 2019, 224, 366-372.	3.9	2
70	Molecular dynamics simulation study on the mechanisms of liquid-phase permeation in nanopores. Separation and Purification Technology, 2019, 220, 259-267.	3.9	6
71	Tailoring the molecular sieving properties and thermal stability of carbonized membranes containing polyhedral oligomeric silsesquioxane (POSS)-polyimide via the introduction of norbornene. Journal of Membrane Science, 2019, 582, 59-69.	4.1	14
72	Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures. Separation and Purification Technology, 2019, 212, 1001-1012.	3.9	16

#	Article	IF	CITATIONS
73	Effects of Calcination Condition on the Network Structure of Triethoxysilane (TRIES) and How Si–H Groups Influence Hydrophobicity Under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 3867-3875.	1.8	4
74	Molecular Dynamics Simulation Study of Solid Vibration Permeation in Microporous Amorphous Silica Network Voids. Membranes, 2019, 9, 132.	1.4	7
75	Research and development on membrane IS process for hydrogen production using solar heat. International Journal of Hydrogen Energy, 2019, 44, 19141-19152.	3.8	16
76	Development of Highly Permeable Molecular Sieving Membranes via Controlling Microporous Structure. Membrane, 2019, 44, 121-125.	0.0	0
77	Enhanced CO 2 separation performance for tertiary amineâ€silica membranes via thermally induced local liberation of CH 3 Cl. AICHE Journal, 2018, 64, 1528-1539.	1.8	22
78	Facile and Scalable Flow-Induced Deposition of Organosilica on Porous Polymer Supports for Reverse Osmosis Desalination. ACS Applied Materials & 2018, 10, 14070-14078.	4.0	17
79	Acid post-treatment of sol-gel-derived ethylene-bridged organosilica membranes and their filtration performances. Journal of Membrane Science, 2018, 556, 196-202.	4.1	9
80	Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: pore formation mechanism and gas permeation properties. Journal of Sol-Gel Science and Technology, 2018, 86, 63-72.	1.1	33
81	Preparation of bridged silica RO membranes from copolymerization of bis(triethoxysilyl)ethene/(hydroxymethyl)triethoxysilane. Effects of ethenylene-bridge enhancing water permeability. Journal of Membrane Science, 2018, 546, 173-178.	4.1	21
82	Fluorine-induced microporous silica membranes: Dramatic improvement in hydrothermal stability and pore size controllability for highly permeable propylene/propane separation. Journal of Membrane Science, 2018, 549, 111-119.	4.1	31
83	Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition of Hybrid Silica Membranes. Journal of Chemical Engineering of Japan, 2018, 51, 732-739.	0.3	10
84	Improved thermal and oxidation stability of bis(triethoxysilyl)ethane (BTESE)-derived membranes, and their gas-permeation properties. Journal of Materials Chemistry A, 2018, 6, 23378-23387.	5.2	29
85	UV-Protective TiO ₂ Thin Films with High Transparency in Visible Light Region Fabricated via Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2018, 10, 42657-42665.	4.0	32
86	Preparation of Hybrid Organosilica Reverse Osmosis Membranes by Interfacial Polymerization of Bis[(trialkoxysilyl)propyl]amine. Chemistry Letters, 2018, 47, 1210-1212.	0.7	8
87	Atmospheric-pressure plasma-enhanced chemical vapor deposition of UV-shielding TiO2 coatings on transparent plastics. Materials Letters, 2018, 228, 479-481.	1.3	34
88	Diethylenedioxane-bridged microporous organosilica membrane for gas and water separation. Separation and Purification Technology, 2018, 207, 370-376.	3.9	13
89	Fluorine Doping of Microporous Organosilica Membranes for Pore Size Control and Enhanced Hydrophobic Properties. ACS Omega, 2018, 3, 8612-8620.	1.6	25
90	Preparation, characterization, and evaluation of TiO2-ZrO2 nanofiltration membranes fired at different temperatures. Journal of Membrane Science, 2018, 564, 691-699.	4.1	28

#	Article	IF	CITATIONS
91	Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Applied Sciences (Switzerland), 2018, 8, 1032.	1.3	46
92	Tailoring a Thermally Stable Amorphous SiOC Structure for the Separation of Large Molecules: The Effect of Calcination Temperature on SiOC Structures and Gas Permeation Properties. ACS Omega, 2018, 3, 6369-6377.	1.6	12
93	Pervaporation dehydration of aqueous solutions of various types of molecules via organosilica membranes: Effect of membrane pore sizes and molecular sizes. Separation and Purification Technology, 2018, 207, 108-115.	3.9	47
94	Nano/subnano-tuning of Porous Silica Membranes and Application to Hydrogen Separation. Membrane, 2018, 43, 180-187.	0.0	0
95	Pyrimidine-bridged organoalkoxysilane membrane for high-efficiency CO 2 transport via mild affinity. Separation and Purification Technology, 2017, 178, 232-241.	3.9	34
96	Photo-induced sol–gel synthesis of polymer-supported silsesquioxane membranes. RSC Advances, 2017, 7, 7150-7157.	1.7	5
97	Fabrication and Microstructure Tuning of a Pyrimidine-Bridged Organoalkoxysilane Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2017, 56, 1316-1326.	1.8	24
98	Preparation of bridged polysilsesquioxane-based membranes containing 1,2,3-triazole moieties for water desalination. Polymer Journal, 2017, 49, 401-406.	1.3	13
99	Development and permeation properties of SiO2-ZrO2 nanofiltration membranes with a MWCO of & & & & & & & & & & & & & & & & & &	4.1	19
100	Preparation of Bridged Polysilsesquioxane Membranes from Bis[3-(triethoxysilyl)propyl]amine for Water Desalination. Bulletin of the Chemical Society of Japan, 2017, 90, 1035-1040.	2.0	23
101	Preparation of cyclic peptide nanotube structures and molecular simulation of water adsorption and diffusion. Journal of Membrane Science, 2017, 537, 101-110.	4.1	11
102	Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures. AICHE Journal, 2017, 63, 4491-4498.	1.8	65
103	Organosilica bis(triethoxysilyl)ethane (BTESE) membranes for gas permeation (GS) and reverse osmosis (RO): The effect of preparation conditions on structure, and the correlation between gas and liquid permeation properties. Journal of Membrane Science, 2017, 526, 242-251.	4.1	15
104	Preparation of POSS-derived robust RO membranes for water desalination. Desalination, 2017, 404, 322-327.	4.0	20
105	SiO2-ZrO2 nanofiltration membranes of different Si/Zr molar ratios: Stability in hot water and acid/alkaline solutions. Journal of Membrane Science, 2017, 524, 700-711.	4.1	41
106	Synthesis of a 12-membered cyclic siloxane possessing alkoxysilyl groups as a nanobuilding block and its use for preparation of gas permeable membranes. RSC Advances, 2017, 7, 48683-48691.	1.7	11
107	Fabrication and CO2 permeation properties of amine-silica membranes using a variety of amine types. Journal of Membrane Science, 2017, 541, 447-456.	4.1	36
108	Preparation and Gas Permeation Properties of Fluorine–Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size. ACS Applied Materials & Interfaces, 2017, 9, 24625-24633.	4.0	18

#	Article	IF	CITATIONS
109	Pore size tuning of sol-gel-derived triethoxysilane (TRIES) membranes for gas separation. Journal of Membrane Science, 2017, 524, 64-72.	4.1	14
110	Synthesis of organically bridged trialkoxysilanes bearing acetoxymethyl groups and applications to reverse osmosis membranes. Applied Organometallic Chemistry, 2017, 31, e3580.	1.7	14
111	Atmospheric-pressure plasma-enhanced chemical vapor deposition of microporous silica membranes for gas separation. Journal of Membrane Science, 2017, 524, 644-651.	4.1	38
112	Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production. Catalysts, 2017, 7, 23.	1.6	32
113	Propylene/propane Permeation Properties of Metal-doped Organosilica Membranes with Controlled Network Sizes and Adsorptive Properties. Journal of the Japan Petroleum Institute, 2016, 59, 140-148.	0.4	7
114	Nanofiltration performance of SiO2-ZrO2 membranes in aqueous solutions at high temperatures. Separation and Purification Technology, 2016, 168, 238-247.	3.9	21
115	Tailoring the Separation Behavior of Polymer-Supported Organosilica Layered-Hybrid Membranes via Facile Post-Treatment Using HCl and HN ₃ Vapors. ACS Applied Materials & Interfaces, 2016, 8, 11060-11069.	4.0	23
116	Enhanced decomposition of sulfur trioxide in the water-splitting iodine–sulfur process via a catalytic membrane reactor. Journal of Materials Chemistry A, 2016, 4, 15316-15319.	5.2	11
117	Network engineering of a BTESE membrane for improved gas performance via a novel pH-swing method. Journal of Membrane Science, 2016, 511, 219-227.	4.1	31
118	Tailoring the Subnano Silica Structure via Fluorine Doping for Development of Highly Permeable CO ₂ Separation Membranes. ChemNanoMat, 2016, 2, 264-267.	1.5	24
119	Plasma-enhanced chemical vapor deposition of amorphous carbon molecular sieve membranes for gas separation. RSC Advances, 2016, 6, 59045-59049.	1.7	4
120	Pervaporation and vapor permeation characteristics of BTESE-derived organosilica membranes and their long-term stability in a high-water-content IPA/water mixture. Journal of Membrane Science, 2016, 498, 336-344.	4.1	36
121	Effect of firing temperature on the water permeability of SiO2–ZrO2 membranes for nanofiltration. Journal of Membrane Science, 2016, 497, 348-356.	4.1	59
122	Poreâ€size evaluation and gas transport behaviors of microporous membranes: An experimental and theoretical study. AICHE Journal, 2015, 61, 2268-2279.	1.8	10
123	Photo-induced sol–gel processing for low-temperature fabrication of high-performance silsesquioxane membranes for use in molecular separation. Chemical Communications, 2015, 51, 9932-9935.	2.2	10
124	Catalytic membrane reactors for SO3 decomposition in Iodine–Sulfur thermochemical cycle: A simulation study. International Journal of Hydrogen Energy, 2015, 40, 12687-12696.	3.8	18
125	Tuning the pore sizes of novel silica membranes for improved gas permeation properties via an in situ reaction between NH ₃ and Si–H groups. Chemical Communications, 2015, 51, 2551-2554.	2.2	9
126	Preparation and separation properties of porous norbornane-bridged silica membrane. Journal of Sol-Gel Science and Technology, 2015, 73, 365-370.	1.1	12

MASAKOTO KANEZASHI

#	Article	IF	CITATIONS
127	Reverse osmosis performance of layered-hybrid membranes consisting of an organosilica separation layer on polymer supports. Journal of Membrane Science, 2015, 494, 104-112.	4.1	19
128	Evaluating the gas permeation properties and hydrothermal stability of organosilica membranes under different hydrosilylation conditions. Journal of Membrane Science, 2015, 493, 664-672.	4.1	8
129	Plasma-assisted multi-layered coating towards improved gas permeation properties for organosilica membranes. RSC Advances, 2015, 5, 59837-59844.	1.7	10
130	Plasma treatment of hydrophobic sub-layers to prepare uniform multi-layered films and high-performance gas separation membranes. Applied Surface Science, 2015, 349, 415-419.	3.1	9
131	Preparation and separation properties of oxalylureaâ€bridged silica membranes. Applied Organometallic Chemistry, 2015, 29, 433-438.	1.7	16
132	Microporous organosilica membranes for gas separation prepared via PECVD using different O/Si ratio precursors. Journal of Membrane Science, 2015, 489, 11-19.	4.1	37
133	Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor. AICHE Journal, 2015, 61, 1628-1638.	1.8	44
134	Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration. Journal of Membrane Science, 2015, 493, 515-523.	4.1	29
135	Permeation properties of BTESE–TEOS organosilica membranes and application to O2/SO2 gas separation. Journal of Membrane Science, 2015, 496, 211-218.	4.1	30
136	Preparation of hydroxyl group containing bridged organosilica membranes for water desalination. Separation and Purification Technology, 2015, 156, 396-402.	3.9	20
137	Preparation of organosilica membranes on hydrophobic intermediate layers and evaluation of gas permeation in the presence of water vapor. Journal of Membrane Science, 2015, 496, 156-164.	4.1	24
138	Development and gas permeation properties of microporous amorphous TiO2–ZrO2–organic composite membranes using chelating ligands. Journal of Membrane Science, 2014, 461, 96-105.	4.1	29
139	Fabrication of a layered hybrid membrane using an organosilica separation layer on a porous polysulfone support, and the application to vapor permeation. Journal of Membrane Science, 2014, 464, 140-148.	4.1	31
140	High-temperature stability of PECVD-derived organosilica membranes deposited on TiO2 and SiO2–ZrO2 intermediate layers using HMDSO/Ar plasma. Separation and Purification Technology, 2014, 121, 13-19.	3.9	16
141	A closer look at the development and performance of organic–inorganic membranes using 2,4,6-tris[3(triethoxysilyl)-1-propoxyl]-1,3,5-triazine (TTESPT). RSC Advances, 2014, 4, 12404.	1.7	12
142	Preparation and gas permeation properties of thermally stable organosilica membranes derived by hydrosilylation. Journal of Materials Chemistry A, 2014, 2, 672-680.	5.2	21
143	Modified gasâ€ŧranslation model for prediction of gas permeation through microporous organosilica membranes. AICHE Journal, 2014, 60, 4199-4210.	1.8	52
144	Insight into the pore tuning of triazine-based nitrogen-rich organoalkoxysilane membranes for use in water desalination. RSC Advances, 2014, 4, 23759-23769.	1.7	25

#	Article	IF	CITATIONS
145	Experimental and Theoretical Study on Small Gas Permeation Properties through Amorphous Silica Membranes Fabricated at Different Temperatures. Journal of Physical Chemistry C, 2014, 118, 20323-20331.	1.5	36
146	Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for CO _x -free hydrogen production from ammonia. Journal of Materials Chemistry A, 2014, 2, 9185-9192.	5.2	47
147	New Insights into the Microstructure-Separation Properties of Organosilica Membranes with Ethane, Ethylene, and Acetylene Bridges. ACS Applied Materials & Interfaces, 2014, 6, 9357-9364.	4.0	69
148	Synthesis and characterization of a layered-hybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane. Journal of Membrane Science, 2014, 472, 19-28.	4.1	24
149	CO ₂ Permeation through Hybrid Organosilica Membranes in the Presence of Water Vapor. Industrial & Engineering Chemistry Research, 2014, 53, 6113-6120.	1.8	43
150	Gas permeation properties through Al-doped organosilica membranes with controlled network size. Journal of Membrane Science, 2014, 466, 246-252.	4.1	34
151	Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation. Journal of Membrane Science, 2014, 455, 375-383.	4.1	96
152	Ammonia decomposition in catalytic membrane reactors: Simulation and experimental studies. AICHE Journal, 2013, 59, 168-179.	1.8	63
153	Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes. Journal of Membrane Science, 2013, 446, 504-512.	4.1	48
154	Sol–gel spin coating process to fabricate a new type of uniform and thin organosilica coating on polysulfone film. Materials Letters, 2013, 109, 130-133.	1.3	15
155	Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties. AICHE Journal, 2013, 59, 1298-1307.	1.8	53
156	Hydrogen Permeation Properties and Hydrothermal Stability of Sol–Gelâ€Derived Amorphous Silica Membranes Fabricated at High Temperatures. Journal of the American Ceramic Society, 2013, 96, 2950-2957.	1.9	35
157	Methylcyclohexane Dehydrogenation in Catalytic Membrane Reactors for Efficient Hydrogen Production. Industrial & Engineering Chemistry Research, 2013, 52, 13325-13332.	1.8	26
158	Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics. AICHE Journal, 2013, 59, 2179-2194.	1.8	47
159	Control of Pd dispersion in sol–gel-derived amorphous silica membranes for hydrogen separation at high temperatures. Journal of Membrane Science, 2013, 439, 78-86.	4.1	39
160	Pore size control of Al-doping into bis (triethoxysilyl) methane (BTESM)-derived membranes for improved gas permeation properties. RSC Advances, 2013, 3, 12080.	1.7	11
161	Molecular dynamics simulation study on characterization of bis(triethoxysilyl)-ethane and bis(triethoxysilyl)ethylene derived silica-based membranes. Desalination and Water Treatment, 2013, 51, 5248-5253.	1.0	9
162	Characterization and gas permeation properties of amorphous silica membranes prepared via plasma enhanced chemical vapor deposition. Journal of Membrane Science, 2013, 441, 45-53.	4.1	46

#	Article	IF	CITATIONS
163	Equilibrium shift of methylcyclohexane dehydrogenation in a thermally stable organosilica membrane reactor for high-purity hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 15302-15306.	3.8	35
164	Pervaporation performance and characterization of organosilica membranes with a tuned pore size by solid-phase HCl post-treatment. Journal of Membrane Science, 2013, 441, 120-128.	4.1	24
165	Tailoring the Affinity of Organosilica Membranes by Introducing Polarizable Ethenylene Bridges and Aqueous Ozone Modification. ACS Applied Materials & Interfaces, 2013, 5, 6147-6154.	4.0	46
166	Preparation and characterization of methyl-modified hybrid silica membranes for gas separation. Desalination and Water Treatment, 2013, 51, 5149-5154.	1.0	8
167	Micropore Filling Phase Permeation of a Condensable Vapor in Silica Membranes: A Molecular Dynamics Study. Journal of Chemical Engineering of Japan, 2013, 46, 659-671.	0.3	9
168	Pore-size Tuning of Highly Selective Organic–Inorganic Hybrid Silica Membranes by Solid-phase Post-treatment at Low Temperature. Chemistry Letters, 2012, 41, 1663-1665.	0.7	7
169	Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at different calcination temperatures. Journal of Membrane Science, 2012, 415-416, 478-485.	4.1	47
170	Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes. Journal of Membrane Science, 2012, 415-416, 810-815.	4.1	50
171	Preparation of a novel bimodal catalytic membrane reactor and its application to ammonia decomposition for COx-free hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 12105-12113.	3.8	54
172	Pervaporation of acetic acid aqueous solutions by organosilica membranes. Journal of Membrane Science, 2012, 421-422, 25-31.	4.1	54
173	Organic–Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation. Industrial & Engineering Chemistry Research, 2012, 51, 944-953.	1.8	95
174	Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane. AICHE Journal, 2012, 58, 1733-1743.	1.8	45
175	2-Step plasma-enhanced CVD for low-temperature fabrication of silica membranes with high gas-separation performance. Chemical Communications, 2011, 47, 8070.	2.2	39
176	Gas Permeation Properties of Helium, Hydrogen, and Polar Molecules Through Microporous Silica Membranes at High Temperatures. Membrane Science and Technology, 2011, 14, 117-136.	0.5	3
177	Development of Robust Organosilica Membranes for Reverse Osmosis. Langmuir, 2011, 27, 13996-13999.	1.6	118
178	Highly enhanced ammonia decomposition in a bimodal catalytic membrane reactor for CO -free hydrogen production. Catalysis Communications, 2011, 15, 60-63.	1.6	57
179	Evaluation and fabrication of poreâ€sizeâ€tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation. AICHE Journal, 2011, 57, 2755-2765.	1.8	119
180	Molecular simulation of micro-structures and gas diffusion behavior of organic–inorganic hybrid amorphous silica membranes. Journal of Membrane Science, 2011, 381, 90-101.	4.1	47

#	Article	IF	CITATIONS
181	Pore-size-controlled silica membranes with disiloxane alkoxides for gas separation. Journal of Membrane Science, 2011, 383, 152-158.	4.1	36
182	Preparation of hydrophobic nanoporous methylated SiO2 membranes and application to nanofiltration of hexane solutions. Journal of Membrane Science, 2011, 384, 149-156.	4.1	43
183	Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization. Journal of Membrane Science, 2011, 366, 382-388.	4.1	77
184	Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures. AICHE Journal, 2011, 57, 618-629.	1.8	96
185	Pervaporation of methanol/dimethyl carbonate using SiO ₂ membranes with nanoâ€ŧuned pore sizes and surface chemistry. AICHE Journal, 2011, 57, 2079-2089.	1.8	33
186	Preparation of organic–inorganic hybrid silica membranes using organoalkoxysilanes: The effect of pendant groups. Journal of Membrane Science, 2011, 379, 287-295.	4.1	77
187	Sol-Gel derived Silica Membranes: Control of Silica Network Size and Hydrothermal Stability. Membrane, 2011, 36, 97-103.	0.0	1
188	Characteristics of ammonia permeation through porous silica membranes. AICHE Journal, 2010, 56, 1204-1212.	1.8	41
189	Organic–inorganic hybrid silica membranes with controlled silica network size: Preparation and gas permeation characteristics. Journal of Membrane Science, 2010, 348, 310-318.	4.1	133
190	Preparation of organic/inorganic hybrid silica using methyltriethoxysilane and tetraethoxysilane as co-precursors. Journal of Sol-Gel Science and Technology, 2010, 53, 93-99.	1.1	28
191	Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. Journal of Membrane Science, 2010, 362, 76-80.	4.1	169
192	Preparation of hydrogen separation membranes using disiloxane compounds. Desalination and Water Treatment, 2010, 17, 120-126.	1.0	5
193	Extremely thin Pd–silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability. Chemical Communications, 2010, 46, 6171.	2.2	41
194	A molecular dynamics simulation of a homogeneous organic–inorganic hybrid silica membrane. Chemical Communications, 2010, 46, 9140.	2.2	63
195	Prediction of pervaporation performance of aqueous ethanol solutions based on single gas permeation. Desalination and Water Treatment, 2010, 17, 106-112.	1.0	3
196	Permeation Characteristics of Electrolytes and Neutral Solutes through Titania Nanofiltration Membranes at High Temperatures. Langmuir, 2010, 26, 10897-10905.	1.6	57
197	Molecular Dynamics Simulation Study of Bimodal Porous Structure and Gas Permeation Properties of Microporous Silica Membranes. Kagaku Kogaku Ronbunshu, 2010, 36, 174-180.	0.1	1
198	Hydrogen Permeation Performance and Hydrothermal Stability for Sol-gel Derived Pd-doped Silica Membranes. Kagaku Kogaku Ronbunshu, 2010, 36, 472-479.	0.1	5

#	Article	IF	CITATIONS
199	Gas Permeation and Diffusion Characteristics of MFI-Type Zeolite Membranes at High Temperatures. Journal of Physical Chemistry C, 2009, 113, 3767-3774.	1.5	94
200	Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermal Stability. Journal of the American Chemical Society, 2009, 131, 414-415.	6.6	222
201	Preparation of Palladium Membrane for Hydrogen Separation by Self-Tuning Photocatalytic Deposition. Kagaku Kogaku Ronbunshu, 2009, 35, 232-238.	0.1	1
202	Gas permeation through DDRâ€ŧype zeolite membranes at high temperatures. AICHE Journal, 2008, 54, 1478-1486.	1.8	194
203	Effects of adsorption-induced microstructural changes on separation of xylene isomers through MFI-type zeolite membranes. Journal of Membrane Science, 2008, 320, 505-513.	4.1	45
204	Microporous inorganic membranes for high temperature hydrogen purification. Journal of Applied Physics, 2008, 104, .	1.1	86
205	Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer. Microporous and Mesoporous Materials, 2007, 103, 302-308.	2.2	38
206	A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes. Microporous and Mesoporous Materials, 2007, 105, 140-148.	2.2	45
207	Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. Journal of Membrane Science, 2006, 271, 86-93.	4.1	245
208	Template-free synthesis of MFI-type zeolite membranes: Permeation characteristics and thermal stability improvement of membrane structure. Journal of Membrane Science, 2006, 286, 213-222.	4.1	85
209	Stability of H2-Permeselective Ni-doped Silica Membranes in Steam at High Temperature. Journal of Chemical Engineering of Japan, 2005, 38, 908-912.	0.3	52
210	Nickel-Doped Silica Membranes for Separation of Helium from Organic Gas Mixtures. Separation Science and Technology, 2005, 40, 225-238.	1.3	56
211	Gas Permeation Characteristics and Stability of Composite Silica-Metal Oxide Membranes. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	7
212	Preparation of amine- and ammonium-containing polysilsesquioxane membranes for CO2 separation. Polymer Journal, 0, , .	1.3	1
213	Design of carbon–ceramic composite membranes with tunable molecular cut-offs from a carboxylic benzoxazine ligand chelated to silica–zirconia. Molecular Systems Design and Engineering, 0, , .	1.7	2