Ji-Gang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786824/publications.pdf Version: 2024-02-01

25014	15716
58 57	125
ons h-inde	ex g-index
122	7 26870
ations times ra	nked citing authors
	58 57 ons h-inde 27 122 ations times ra

#	Article	IF	CITATIONS
1	Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10, 780-786.	13.3	5,120
2	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
3	Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5, 4695.	5.8	1,413
4	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	6.6	1,266
5	Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nature Communications, 2013, 4, 2439.	5.8	1,231
6	An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). Journal of the American Chemical Society, 2007, 129, 744-745.	6.6	1,106
7	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	6.6	747
8	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	1.6	719
9	A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances, 2015, 1, e1500462.	4.7	719
10	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	5.8	466
11	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	7.3	419
12	The discharge rate capability of rechargeable Li–O2 batteries. Energy and Environmental Science, 2011, 4, 2999.	15.6	394
13	Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy and Environmental Science, 2013, 6, 2518.	15.6	392
14	Chemical and Morphological Changes of Li–O ₂ Battery Electrodes upon Cycling. Journal of Physical Chemistry C, 2012, 116, 20800-20805.	1.5	353
15	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	5.8	347
16	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	5.8	334
17	Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano, 2011, 5, 7788-7795.	7.3	303
18	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	4.7	263

#	Article	IF	CITATIONS
19	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	11.1	251
20	Comparison of the rate capability of nanostructured amorphous and anatase TiO ₂ for lithium insertion using anodic TiO ₂ nanotube arrays. Nanotechnology, 2009, 20, 225701.	1.3	194
21	Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold–Iron Core–Shell Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15608-15611.	6.6	191
22	Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber. Journal of Physical Chemistry C, 2013, 117, 5446-5452.	1.5	189
23	Chemoselectivity-induced multiple interfaces in MWCNT/Fe ₃ O ₄ @ZnO heterotrimers for whole X-band microwave absorption. Nanoscale, 2014, 6, 12298-12302.	2.8	188
24	Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy and Environmental Science, 2013, 6, 926.	15.6	177
25	N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure. Scientific Reports, 2015, 5, 12925.	1.6	176
26	Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy and Environmental Science, 2012, 5, 7872.	15.6	167
27	Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. Journal of Materials Chemistry A, 2015, 3, 6517-6525.	5.2	163
28	Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires. Journal of Materials Chemistry C, 2015, 3, 4416-4423.	2.7	163
29	Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting. Scientific Reports, 2014, 4, 6627.	1.6	160
30	Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale. Energy and Environmental Science, 2013, 6, 1582.	15.6	146
31	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
32	Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy and Environmental Science, 2016, 9, 1270-1281.	15.6	122
33	Inverse Spinel Cobalt–Iron Oxide and N-Doped Graphene Composite as an Efficient and Durable Bifuctional Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 4082-4090.	5.5	122
34	Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive. ACS Applied Materials & Interfaces, 2019, 11, 14066-14075.	4.0	110
35	Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell. RSC Advances, 2013, 3, 3309.	1.7	106
36	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	5.8	104

#	Article	IF	CITATIONS
37	Mg Doped Perovskite LaNiO ₃ Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 923-931.	2.5	103
38	Interaction between Pt nanoparticles and carbon nanotubes – An X-ray absorption near edge structures (XANES) study. Chemical Physics Letters, 2007, 437, 229-232.	1.2	98
39	A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Materials, 2015, 7, e153-e153.	3.8	88
40	Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014, 16, 15787.	1.3	84
41	Characterization of Disordered Li _(1+<i>x</i>) Ti _{2<i>x</i>} Fe _(1â€"3<i>x</i>) O ₂ as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory. Chemistry of Materials, 2015, 27, 7751-7756.	3.2	83
42	Tuning of Electrogenerated Silole Chemiluminescence. Angewandte Chemie - International Edition, 2008, 47, 7731-7735.	7.2	76
43	An X-ray Absorption, Photoemission, and Raman Study of the Interaction between SnO ₂ Nanoparticle and Carbon Nanotube. Journal of Physical Chemistry C, 2009, 113, 6114-6117.	1.5	74
44	Enhanced electrochemical reduction of CO ₂ to CO on Ag electrocatalysts with increased unoccupied density of states. Journal of Materials Chemistry A, 2016, 4, 12616-12623.	5.2	74
45	Observation of Single Tin Dioxide Nanoribbons by Confocal Raman Microspectroscopy. Journal of Physical Chemistry C, 2007, 111, 18839-18843.	1.5	71
46	Electronic structure of TiO2 nanotube arrays from X-ray absorption near edge structure studies. Journal of Materials Chemistry, 2009, 19, 6804.	6.7	68
47	Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. Chemical Science, 2015, 6, 3262-3267.	3.7	68
48	Solid-state activation of Li ₂ O ₂ oxidation kinetics and implications for Li–O ₂ 2 batteries. Energy and Environmental Science, 2015, 8, 2417-2426.	15.6	68
49	Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2014, 150-151, 138-146.	10.8	67
50	Capacity Fade Mechanism of Li ₄ Ti ₅ O ₁₂ Nanosheet Anode. Advanced Energy Materials, 2017, 7, 1601825.	10.2	67
51	Nitrogen-Doped NiCo ₂ O ₄ Microsphere as an Efficient Catalyst for Flexible Rechargeable Zinc–Air Batteries and Self-Charging Power System. ACS Applied Energy Materials, 2019, 2, 2296-2304.	2.5	66
52	In Situ Synthesis of Grapheneâ€Coated Silicon Monoxide Anodes from Coalâ€Derived Humic Acid for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101645.	7.8	65
53	Nano-scale chemical imaging of a single sheet of reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 14622.	6.7	64
54	Imaging Nitrogen in Individual Carbon Nanotubes. Journal of Physical Chemistry Letters, 2010, 1, 1709-1713.	2.1	63

#	Article	IF	CITATIONS
55	Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Advances, 2014, 4, 32690-32697.	1.7	63
56	Electronic Structure of Graphdiyne Probed by X-ray Absorption Spectroscopy and Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2013, 117, 5931-5936.	1.5	62
57	Nanoscale chemical imaging and spectroscopy of individual RuO2 coated carbon nanotubes. Chemical Communications, 2010, 46, 2778.	2.2	58
58	Origin of luminescence fromGa2O3nanostructures studied using x-ray absorption and luminescence spectroscopy. Physical Review B, 2007, 75, .	1.1	57
59	Observation of the origin of d ⁰ magnetism in ZnO nanostructures using X-ray-based microscopic and spectroscopic techniques. Nanoscale, 2014, 6, 9166.	2.8	57
60	Immobilization of RuO ₂ on Carbon Nanotube: An X-ray Absorption Near-Edge Structure Study. Journal of Physical Chemistry C, 2009, 113, 10747-10750.	1.5	56
61	Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8302-8314.	5.2	56
62	Si photoanode protected by a metal modified ITO layer with ultrathin NiOx for solar water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 4612-4625.	1.3	55
63	In-situ surface chemical and structural self-reconstruction strategy enables high performance of Li-rich cathode. Nano Energy, 2021, 79, 105459.	8.2	53
64	The influence of transition metal oxides on the kinetics of Li ₂ O ₂ oxidation in Li–O ₂ batteries: high activity of chromium oxides. Physical Chemistry Chemical Physics, 2014, 16, 2297-2304.	1.3	52
65	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2019, 11, 41258-41266.	4.0	50
66	Electronic structure and luminescence center of blue luminescent carbon nanocrystals. Chemical Physics Letters, 2009, 474, 320-324.	1.2	49
67	Spectroscopic understanding of ultra-high rate performance for LiMn0.75Fe0.25PO4 nanorods–graphene hybrid in lithium ion battery. Physical Chemistry Chemical Physics, 2012, 14, 9578.	1.3	48
68	Electronic structure variation of the surface and bulk of a LiNi _{0.5} Mn _{1.5} O ₄ cathode as a function of state of charge: X-ray absorption spectroscopic study. Physical Chemistry Chemical Physics, 2014, 16, 13838-13842.	1.3	44
69	Identifying the descriptor governing NO oxidation on mullite Sm(Y, Tb, Gd,) Tj ETQq1 1 0.784314 rgBT /Overlo 2016, 6, 3971-3975.	ck 10 Tf 50 2.1) 187 Td (Lu) 44
70	Revealing the Role of Poly(vinylidene fluoride) Binder in Si/Graphite Composite Anode for Li-Ion Batteries. ACS Omega, 2018, 3, 11684-11690.	1.6	42
71	Nature of Electromagnetic-Transparent SiO ₂ Shell in Hybrid Nanostructure Enhancing Electromagnetic Attenuation. Journal of Physical Chemistry C, 2016, 120, 12967-12973.	1.5	40
72	Soft X-ray Ptychography Chemical Imaging of Degradation in a Composite Surface-Reconstructed Li-Rich Cathode. ACS Nano, 2021, 15, 1475-1485.	7.3	40

#	Article	IF	CITATIONS
73	Electrochemistry and electrochemiluminescence study of blue luminescent carbon nanocrystals. Chemical Physics Letters, 2010, 493, 296-298.	1.2	39
74	Revealing the charge/discharge mechanism of Na–O ₂ cells by <i>in situ</i> soft X-ray absorption spectroscopy. Energy and Environmental Science, 2018, 11, 2073-2077.	15.6	37
75	Highly Selective Electrocatalytic Reduction of CO ₂ into Methane on Cu–Bi Nanoalloys. Journal of Physical Chemistry Letters, 2020, 11, 7261-7266.	2.1	37
76	Thermal-induced interlayer defect engineering toward super high-performance sodium ion capacitors. Nano Energy, 2019, 59, 17-25.	8.2	36
77	Utilizing Environmental Friendly Iron as a Substitution Element in Spinel Structured Cathode Materials for Safer High Energy Lithiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501662.	10.2	35
78	Electrode Stack Geometry Changes during Gas Evolution in Pouch-Cell-Type Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A6158-A6162.	1.3	35
79	Structural variation and water adsorption of a SnO2 coated carbon nanotube: a nanoscale chemical imaging study. Journal of Materials Chemistry, 2011, 21, 5944.	6.7	34
80	Mechanism for improving the cycle performance of LiNi0.5Mn1.5O4 by RuO2 surface modification and increasing discharge cut-off potentials. Journal of Materials Chemistry A, 2015, 3, 15457-15465.	5.2	33
81	Optical emission of biaxial ZnO–ZnS nanoribbon heterostructures. Journal of Chemical Physics, 2009, 130, 084707.	1.2	32
82	Characterization of surface composition on Alloy 22 in neutral chloride solutions. Surface and Interface Analysis, 2013, 45, 1014-1019.	0.8	31
83	Imaging state of charge and its correlation to interaction variation in an LiMn0.75Fe0.25PO4 nanorods–graphene hybrid. Chemical Communications, 2013, 49, 1765.	2.2	31
84	Annealing-regulated elimination of residual strain-induced structural relaxation for stable high-power Li4Ti5O12 nanosheet anodes. Nano Energy, 2017, 32, 533-541.	8.2	29
85	Biaxial ZnOâ~'ZnS Nanoribbon Heterostructures. Journal of Physical Chemistry C, 2009, 113, 4755-4757.	1.5	28
86	Insights into the Effect of Heat Treatment and Carbon Coating on the Electrochemical Behaviors of SiO Anodes for Liâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28
87	Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation. Journal of Power Sources, 2016, 329, 355-363.	4.0	26
88	Nanoscale chemical imaging of the additive effects on the interfaces of high-voltage LiCoO ₂ composite electrodes. Chemical Communications, 2017, 53, 8581-8584.	2.2	24
89	Magnetism in Lithium–Oxygen Discharge Product. ChemSusChem, 2013, 6, 1196-1202.	3.6	23
90	Improving Electrochemical Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode by Cobalt Surface Modification. ACS Applied Energy Materials, 2019, 2, 2982-2989.	2.5	23

#	Article	IF	CITATIONS
91	Highly conductive NMP-free carbon-coated nano-lithium titanate/carbon composite electrodes via SBR-assisted electrophoretic deposition. Electrochimica Acta, 2019, 299, 107-115.	2.6	22
92	Tailoring multi-wall carbon nanotubes for smaller nanostructures. Carbon, 2009, 47, 829-838.	5.4	20
93	Enhancement of the cycling performance of Li ₃ V ₂ (PO ₄) ₃ /C by stabilizing the crystal structure through Zn ²⁺ doping. Physical Chemistry Chemical Physics, 2014, 16, 13858-13865.	1.3	19
94	Chemical bonding in amorphous Si-coated carbon nanotubes as anodes for Li ion batteries: a XANES study. RSC Advances, 2014, 4, 20226-20229.	1.7	17
95	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.	3.2	17
96	The effect of the surface of SnO2 nanoribbons on their luminescence using x-ray absorption and luminescence spectroscopy. Journal of Chemical Physics, 2008, 128, 144703.	1.2	16
97	Ferromagnetism in homogeneous (Al,Co)-codoped 4H-silicon carbides. Journal of Magnetism and Magnetic Materials, 2014, 363, 34-42.	1.0	16
98	Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure. Journal of Power Sources, 2016, 302, 223-232.	4.0	15
99	Imaging the surface morphology, chemistry and conductivity of LiNi _{1/3} Fe _{1/3} Mn _{4/3} O ₄ crystalline facets using scanning transmission X-ray microscopy. Physical Chemistry Chemical Physics, 2016, 18, 22789-22793.	1.3	14
100	Nanoscale assembling of graphene oxide with electrophoretic deposition leads to superior percolation network in Li-ion electrodes: TiNb2O7/rGO composite anodes. Nanoscale, 2020, 12, 23092-23104.	2.8	14
101	Chemical Imaging of Nanoscale Interfacial Inhomogeneity in LiFePO ₄ Composite Electrodes from a Cycled Large-Format Battery. ACS Applied Materials & Interfaces, 2017, 9, 39336-39341.	4.0	13
102	Tunable electrogenerated chemiluminescence from CdSe nanocrystals. Canadian Journal of Chemistry, 2009, 87, 386-391.	0.6	12
103	Resolving the Chemical Variation of Phosphates in Thin ZDDP Tribofilms by X-ray Photoelectron Spectroscopy Using Synchrotron Radiation: Evidence for Ultraphosphates and Organic Phosphates. Tribology Letters, 2010, 39, 101-107.	1.2	11
104	Photoelectrochemical and Physical Insight into Cu2ZnSnS4Nanocrystals Using Synchrotron Radiation. Journal of Physical Chemistry C, 2015, 119, 11922-11928.	1.5	11
105	Effect of humidity on individual SnO2 coated carbon nanotubes studied by in situ STXM. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 296-300.	0.8	10
106	Electronic structures of CdSe nanocrystals — An X-ray absorption near-edge structure (XANES) investigation. Canadian Journal of Chemistry, 2007, 85, 756-760.	0.6	9
107	Simple method to fabricate large scale quantum dot architectures. Materials Letters, 2009, 63, 563-565.	1.3	9
108	Cycling stability of Li3V2 (PO4)3/C cathode in a broad electrochemical window. Journal of Electroanalytical Chemistry, 2016, 774, 76-82.	1.9	9

#	Article	IF	CITATIONS
109	Unexpected phase separation in Li _{1â^'x} Ni _{0.5} Mn _{1.5} O ₄ within a porous composite electrode. Chemical Communications, 2018, 54, 4152-4155.	2.2	9
110	Xâ€Ray Spectromicroscopy Investigation of Heterogeneous Sodiation in Hard Carbon Nanosheets with Vertically Oriented (002) Planes. Small, 2021, 17, e2102109.	5.2	8
111	Synchrotron powder diffraction, X-ray absorption and 1H nuclear magnetic resonance data for hypoxanthine, C5H4N4O. Powder Diffraction, 2015, 30, 278-285.	0.4	7
112	Three-dimensional macroporous graphene/TiO ₂ nanocomposite as anode material for lithium ion batteries. Materials Express, 2015, 5, 83-94.	0.2	7
113	Correlative imaging of ionic transport and electronic structure in nano Li _{0.5} FePO ₄ electrodes. Chemical Communications, 2020, 56, 984-987.	2.2	7
114	Assessing the Band Structure of CuInS2 Nanocrystals and Their Bonding with the Capping Ligand. Journal of Physical Chemistry C, 2015, 119, 20967-20974.	1.5	6
115	Surface heterogeneity in Li _{0.5} CoO ₂ within a porous composite electrode. Chemical Communications, 2018, 54, 8320-8323.	2.2	6
116	An electrochemical approach to fabricating honeycomb assemblies from multiwall carbon nanotubes. Carbon, 2013, 59, 130-139.	5.4	5
117	Transition from antiferromagnetic ground state to robust ferrimagnetic order with Curie temperatures above 420 K in manganese-based antiperovskite-type structures. Journal of Materials Chemistry C, 2018, 6, 13336-13344.	2.7	5
118	Enhancing Solarâ€Ðriven Water Splitting with Surfaceâ€Engineered Nanostructures. Solar Rrl, 2018, 3, 1800285.	3.1	5
119	Application of nanoporous core–shell structured multi-walled carbon nanotube–graphene oxide nanoribbons in electrochemical biosensors. Microchemical Journal, 2022, 179, 107586.	2.3	5
120	PEDOT Encapsulated and Mechanochemically Engineered Silicate Nanocrystals for High Energy Density Cathodes. Advanced Materials Interfaces, 2020, 7, 2000226.	1.9	4
121	Unusual Li-ion Intercalation Activation with Progressive Capacity Increase in Orthosilicate Nanocomposite Cathode. Journal of Physical Chemistry C, 2020, 124, 5966-5977.	1.5	3
122	Insight into the inhomogeneous capacity distribution characteristic of LiFePO4 cathode in large-format lithium ion cell. Ceramics International, 2021, 47, 9132-9136.	2.3	3
123	Influence of Ti Substitution on Electrochemical Performance and Evolution of LiMn1.5â^'x Ni0.5TixO4 (x) Tj ETQq1	1.0.7843 1.2	814 rgBT /0
124	Studies on effect of Ca-doping on structure and electrochemical properties of garnet-type Y3-xCaxFe5O12-δ. Journal of Solid State Chemistry, 2020, 290, 121530.	1.4	1
125	Imaging State of Charge and Its Correlation to Strong Interaction Variety in Graphene Based Nano Hybrid for Energy Application: A Case Study of Lmfp-Graphene. ECS Meeting Abstracts, 2013, , .	0.0	0
126	Applications of Soft X-ray Spectromicroscopy in Energy Research from Materials to Batteries. , 2021, , 141-178.		0