
Nuria Salazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7868189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	1.5	1,443
2	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	1.4	390
3	Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 2012, 79, 763-772.	1.3	365
4	Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine, 2019, 25, 1234-1242.	15.2	352
5	Intestinal Microbiota Development in Preterm Neonates and EffectÂofÂPerinatal Antibiotics. Journal of Pediatrics, 2015, 166, 538-544.	0.9	329
6	Enhanced butyrate formation by cross-feeding between <i>Faecalibacterium prausnitzii</i> and <i>Bifidobacterium adolescentis</i> . FEMS Microbiology Letters, 2015, 362, fnv176.	0.7	250
7	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
8	Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection, 2006, 69, 2011-2015.	0.8	201
9	Exopolysaccharides Produced by Intestinal <i>Bifidobacterium</i> Strains Act as Fermentable Substrates for Human Intestinal Bacteria. Applied and Environmental Microbiology, 2008, 74, 4737-4745.	1.4	197
10	Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 2004, 37, 839-850.	2.9	192
11	Nutrition and the gut microbiome in the elderly. Gut Microbes, 2017, 8, 82-97.	4.3	191
12	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	2.1	180
13	Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome, 2017, 5, 93.	4.9	165
14	Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 227-237.	1.9	156
15	Mycelium Differentiation and Antibiotic Production in Submerged Cultures of <i>Streptomyces coelicolor</i> . Applied and Environmental Microbiology, 2008, 74, 3877-3886.	1.4	152
16	Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. International Journal of Food Microbiology, 2009, 135, 260-267.	2.1	143
17	Shaping the Metabolism of Intestinal Bacteroides Population through Diet to Improve Human Health. Frontiers in Microbiology, 2017, 8, 376.	1.5	140
18	Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science and Nutrition, 2016, 56, 1440-1453.	5.4	139

#	Article	IF	CITATIONS
19	Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 6-15.	1.0	137
20	An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Frontiers in Microbiology, 2020, 11, 973.	1.5	126
21	Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. International Journal of Food Microbiology, 2004, 94, 79-86.	2.1	125
22	The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Frontiers in Genetics, 2014, 5, 406.	1.1	124
23	Assessment on the Fermentability of Xylooligosaccharides from Rice Husks by Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2008, 56, 7482-7487.	2.4	119
24	Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Journal of Dairy Science, 2009, 92, 4158-4168.	1.4	113
25	Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 2017, 5, 12.	4.9	113
26	Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients, 2019, 11, 1765.	1.7	113
27	Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. International Journal of Food Microbiology, 2011, 149, 28-36.	2.1	109
28	Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study. International Journal of Molecular Sciences, 2016, 17, 649.	1.8	109
29	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
30	Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview. BioMed Research International, 2015, 2015, 1-13.	0.9	107
31	Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International, 2012, 46, 99-107.	2.9	102
32	Bile Affects the Synthesis of Exopolysaccharides by <i>Bifidobacterium animalis</i> . Applied and Environmental Microbiology, 2009, 75, 1204-1207.	1.4	100
33	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	2.2	95
34	How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 2011, 6, 307-318.	1.2	94
35	Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Advances in Nutrition, 2014, 5, 624S-633S.	2.9	92
36	Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. Journal of Applied Microbiology, 2010, 109, 2079-2086.	1.4	89

#	Article	IF	CITATIONS
37	Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology, 2013, 79, 7518-7524.	1.4	82
38	Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. Frontiers in Microbiology, 2019, 10, 1046.	1.5	79
39	Early microbiota, antibiotics and health. Cellular and Molecular Life Sciences, 2018, 75, 83-91.	2.4	76
40	The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61, 1838-1848.	2.9	76
41	Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2007, 73, 4385-4388.	1.4	75
42	Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 2014, 62, 5330-5336.	2.4	75
43	Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Frontiers in Immunology, 2017, 8, 823.	2.2	75
44	Facultative to strict anaerobes ratio in the preterm infant microbiota. Gut Microbes, 2012, 3, 583-588.	4.3	73
45	Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile — A preliminary study. International Journal of Food Microbiology, 2007, 113, 228-232.	2.1	71
46	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	1.3	70
47	Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology, 2011, 144, 342-351.	2.1	66
48	A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose. Applied and Environmental Microbiology, 2005, 71, 6564-6570.	1.4	65
49	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.1	65
50	Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry, 2017, 65, 586-595.	2.4	63
51	Genetic Basis of Tetracycline Resistance in <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> . Applied and Environmental Microbiology, 2010, 76, 3364-3369.	1.4	61
52	Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. International Journal of Food Microbiology, 2005, 101, 341-346.	2.1	60
53	Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe, 2012, 18, 378-380.	1.0	60
54	Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. Journal of Dairy Research, 2009, 76, 317-325.	0.7	53

#	Article	IF	CITATIONS
55	Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients, 2020, 12, 1287.	1.7	53
56	Self-Triggered Functional Electrical Stimulation During Swallowing. Journal of Neurophysiology, 2005, 94, 4011-4018.	0.9	52
57	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	1.3	48
58	Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Human Development, 2011, 87, 511-513.	0.8	47
59	Proteomics of stress response in Bifidobacterium. Frontiers in Bioscience - Landmark, 2008, Volume, 6905.	3.0	45
60	Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in inÂvitro fecal batch cultures from preterm neonates. Anaerobe, 2013, 19, 9-16.	1.0	45
61	Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports, 2018, 8, 14384.	1.6	45
62	Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Frontiers in Microbiology, 2015, 6, 825.	1.5	44
63	Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sciences, 2015, 132, 77-84.	2.0	43
64	Microbiome: Effects of Ageing and Diet. Current Issues in Molecular Biology, 2020, 36, 33-62.	1.0	42
65	Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology, 2011, 162, 514-519.	1.0	40
66	Role of Bifidobacteria on Infant Health. Microorganisms, 2021, 9, 2415.	1.6	40
67	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	1.7	36
68	Intestinal Microbiota and Weight-Gain in Preterm Neonates. Frontiers in Microbiology, 2017, 8, 183.	1.5	35
69	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
70	Immune Modulating Capability of Two Exopolysaccharide-Producing <i>Bifidobacterium</i> Strains in a Wistar Rat Model. BioMed Research International, 2014, 2014, 1-9.	0.9	32
71	Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods, 2018, 45, 34-46.	1.6	29
72	In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. International Journal of Molecular Sciences, 2020, 21, 906.	1.8	29

#	Article	IF	CITATIONS
73	Early-Life Development of the Bifidobacterial Community in the Infant Gut. International Journal of Molecular Sciences, 2021, 22, 3382.	1.8	28
74	Characterization of Exopolysaccharides Produced by <i>Bifidobacterium longum</i> NB667 and Its Cholate-Resistant Derivative Strain IPLA B667dCo. Journal of Agricultural and Food Chemistry, 2012, 60, 1028-1035.	2.4	26
75	Red Wine Consumption Is Associated with Fecal Microbiota and Malondialdehyde in a Human Population. Journal of the American College of Nutrition, 2015, 34, 135-141.	1.1	26
76	<i>In vitro</i> evaluation of the impact of human background microbiota on the response to <i>Bifidobacterium</i> strains and fructo-oligosaccharides. British Journal of Nutrition, 2013, 110, 2030-2036.	1.2	25
77	Could Fecal Phenylacetic and Phenylpropionic Acids Be Used as Indicators of Health Status?. Journal of Agricultural and Food Chemistry, 2018, 66, 10438-10446.	2.4	25
78	Exploring the interactions between serum free fatty acids and fecal microbiota in obesity through a machine learning algorithm. Food Research International, 2019, 121, 533-541.	2.9	25
79	Induction of Î \pm -l-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Archives of Microbiology, 2007, 187, 145-153.	1.0	24
80	Comparison of Different Dietary Indices as Predictors of Inflammation, Oxidative Stress and Intestinal Microbiota in Middle-Aged and Elderly Subjects. Nutrients, 2020, 12, 3828.	1.7	24
81	Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. <i>lactis</i> A1dOxR. Applied and Environmental Microbiology, 2013, 79, 3870-3874.	1.4	19
82	Impact of Extreme Obesity and Dietâ€Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000030.	1.5	19
83	Daily ingestion of Akkermansia mucciniphila for oneÂmonth promotes healthy aging and increases lifespan in old female mice. Biogerontology, 2022, 23, 35-52.	2.0	19
84	Acquisition of Bile Salt Resistance Promotes Antibiotic Susceptibility Changes in Bifidobacterium. Journal of Food Protection, 2005, 68, 1916-1919.	0.8	18
85	Technological characterization and survival of the exopolysaccharide-producing strain <i>Lactobacillus delbrueckii</i> subsp. <i>lactis</i> 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices. Journal of Dairy Research, 2011, 78, 357-364.	0.7	18
86	Bioactive compounds from regular diet and faecal microbial metabolites. European Journal of Nutrition, 2018, 57, 487-497.	1.8	18
87	Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. European Food Research and Technology, 2017, 243, 157-165.	1.6	17
88	Development of probiotic products for nutritional requirements of specific human populations. Engineering in Life Sciences, 2012, 12, 368-376.	2.0	16
89	The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination. Scientific Reports, 2015, 4, 7417.	1.6	15
90	Influence of 2′-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms, 2021, 9, 1478.	1.6	15

#	Article	IF	CITATIONS
91	Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. , 2010, , 885-902.		13
92	Donated Human Milk as a Determinant Factor for the Gut Bifidobacterial Ecology in Premature Babies. Microorganisms, 2020, 8, 760.	1.6	13
93	<i>Bifidobacterium breve</i> IPLA20005 affects in vitro the expression of <i>hly</i> and <i>luxS</i> genes, related to the virulence of <i>Listeria monocytogenes</i> Lm23. Canadian Journal of Microbiology, 2018, 64, 215-221.	0.8	12
94	New players in the relationship between diet and microbiota: the role of macromolecular antioxidant polyphenols. European Journal of Nutrition, 2021, 60, 1403-1413.	1.8	10
95	Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients, 2021, 13, 2412.	1.7	10
96	Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in dietâ€induced obese mice. Obesity, 2014, 22, 1653-1661.	1.5	9
97	Editorial: Insights into Microbe–Microbe Interactions in Human Microbial Ecosystems: Strategies to Be Competitive. Frontiers in Microbiology, 2016, 7, 1508.	1.5	9
98	A proteomic approach towards understanding the cross talk between <i>Bacteroides fragilis</i> and <i>Bifidobacterium longum</i> in coculture. Canadian Journal of Microbiology, 2016, 62, 623-628.	0.8	8
99	In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Frontiers in Microbiology, 2021, 12, 630572.	1.5	8
100	Effect of Intrapartum Antibiotics Prophylaxis on the Bifidobacterial Establishment within the Neonatal Gut. Microorganisms, 2021, 9, 1867.	1.6	8
101	Fatty acids intake and immune parameters in the elderly. Nutricion Hospitalaria, 2013, 28, 474-8.	0.2	8
102	In Vitro Probiotic Modulation of the Intestinal Microbiota and 2′Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms, 2022, 10, 318.	1.6	7
103	Real-time monitoring of HT29 epithelial cells as an in vitro model for assessing functional differences among intestinal microbiotas from different human population groups. Journal of Microbiological Methods, 2018, 152, 210-216.	0.7	6
104	Co-culture affects protein profile and heat tolerance of Lactobacillus delbrueckii subsp. lactis and Bifidobacterium longum. Food Research International, 2013, 54, 1080-1083.	2.9	5
105	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, 2013, 8, .	0.5	5
106	Impact of probiotics on development and behaviour in Drosophila melanogaster – a potential in vivo model to assess probiotics. Beneficial Microbes, 2019, 10, 179-188.	1.0	5
107	Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants. Probiotics and Antimicrobial Proteins, 2020, 12, 1218-1225.	1.9	4
108	Intestinal microbiota alterations by dietary exposure to chemicals from food cooking and processing. Application of data science for risk prediction. Computational and Structural Biotechnology Journal, 2021, 19, 1081-1091.	1.9	4

0

#	Article	IF	CITATIONS
109	Intestinal Immunomodulation and Shifts on the Gut Microbiota of BALB/c Mice Promoted by Two <i>Bifidobacterium</i> and <i>Lactobacillus</i> Strains Isolated from Human Samples. BioMed Research International, 2019, 2019, 1-8.	0.9	3

Diet and Microbiota in the Elderly. , 2021, , 55-55.

8