Tomomichi Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7867759/publications.pdf

Version: 2024-02-01

27 papers 2,460 citations

840776 11 h-index 24 g-index

28 all docs 28 docs citations

times ranked

28

3339 citing authors

#	Article	IF	Citations
1	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	12.6	1,712
2	Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8007-8012.	7.1	341
3	Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evolution & Development, 2008, 10, 176-186.	2.0	102
4	Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens. Plant Journal, 2001, 28, 105-116.	5.7	43
5	The bryophytes <i>Physcomitrium patens</i> and <i>Marchantia polymorpha</i> as model systems for studying evolutionary cell and developmental biology in plants. Plant Cell, 2022, 34, 228-246.	6.6	34
6	Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Reports, 2020, 32, 108127.	6.4	28
7	Conserved function of Rho-related Rop/RAC GTPase signaling in regulation of cell polarity in Physcomitrella patens. Gene, 2014, 544, 241-247.	2.2	27
8	Quantitative imaging of directional transport through plasmodesmata in moss protonemata via single-cell photoconversion of Dendra2. Journal of Plant Research, 2013, 126, 577-585.	2.4	26
9	Abscisic Acid Acts as a Regulator of Molecular Trafficking through Plasmodesmata in the Moss <i>Physcomitrella patens</i> Plant and Cell Physiology, 2019, 60, 738-751.	3.1	25
10	A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. Journal of Plant Research, 2017, 130, 181-192.	2.4	24
11	AP2/ERF transcription factors regulate salt-induced chloroplast division in the moss Physcomitrella patens. Journal of Plant Research, 2020, 133, 537-548.	2.4	16
12	A model system for analyzing intercellular communication through plasmodesmata using moss protonemata and leaves. Journal of Plant Research, 2015, 128, 63-72.	2.4	11
13	Characterisation of rapid alkalinisation factors in <i>Physcomitrium patens</i> reveals functional conservation in tip growth. New Phytologist, 2022, 233, 2442-2457.	7.3	11
14	Quantitative Imaging Reveals Distinct Contributions of SnRK2 and ABI3 in Plasmodesmatal Permeability in Physcomitrella patens. Plant and Cell Physiology, 2020, 61, 942-956.	3.1	10
15	Plasmodesmata: function and diversity in plant intercellular communication. Journal of Plant Research, 2015, 128, 3-5.	2.4	8
16	Phototropism in gametophytic shoots of the moss <i>Physcomitrella patens</i> . Plant Signaling and Behavior, 2015, 10, e1010900.	2.4	8
17	How plants grow under gravity conditions besides 1 g: perspectives from hypergravity and space experiments that employ bryophytes as a model organism. Plant Molecular Biology, 2021, 107, 279-291.	3.9	8
18	Hypergravity of 10g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens. Microgravity Science and Technology, 2017, 29, 467-473.	1.4	7

#	Article	lF	CITATIONS
19	Callose Detection and Quantification at Plasmodesmata in Bryophytes. Methods in Molecular Biology, 2022, 2457, 177-187.	0.9	5
20	The cellular function of ROP GTPase prenylation is important for multicellularity in the moss <i>Physcomitrium patens</i> . Development (Cambridge), 2022, 149, .	2.5	5
21	Practical application of proximal sensing for monitoring the growth of <i>Physcomitrium patens</i> . Uchu Seibutsu Kagaku, 2021, 35, 32-40.	0.3	3
22	Comparisons of the Effects of Vibration of Two Centrifugal Systems on the Growth and Morphological Parameters of the Moss <i>Physcomitrella patens</i> . Uchu Seibutsu Kagaku, 2017, 31, 9-13.	0.3	2
23	A PSTAIRE-type cyclin-dependent kinase controls light responses in land plants. Science Advances, 2022, 8, eabk2116.	10.3	2
24	Abscisic acid switches cell division modes of asymmetric cell division and symmetric cell division in stem cells of protonemal filaments in the moss <i>Physcomitrium patens</i> . Plant Biotechnology, 2022, 39, 13-17.	1.0	2
25	An Experimental System for Examining Phototropic Response of Gametophytic Shoots in the Moss Physcomitrella patens. Methods in Molecular Biology, 2019, 1924, 45-51.	0.9	0
26	Molecular biology of mosses. Plant Molecular Biology, 2021, 107, 209-211.	3.9	0
27	Tracking Intercellular Movement of Fluorescent Proteins in Bryophytes. Methods in Molecular Biology, 2022, 2457, 321-332.	0.9	0