
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7867363/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF         | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 1  | Combined use of conventional and clumped carbonate stable isotopes to identify hydrothermal isotopic alteration in cave walls. Scientific Reports, 2022, 12, .                                                | 3.3        | 1            |
| 2  | Isotopic Composition of Atmospheric Precipitation in the Cis-Ural Region. Journal of Earth Science<br>(Wuhan, China), 2022, 33, 831-838.                                                                      | 3.2        | 2            |
| 3  | <sup>230</sup> Th dating of flowstone from Ignatievskaya Cave, Russia: Age constraints of rock art<br>and paleoclimate inferences. Geoarchaeology - an International Journal, 2021, 36, 532-545.              | 1.5        | 2            |
| 4  | Hypogene speleogenesis and paragenesis in the Dolomites. Geomorphology, 2021, 382, 107667.                                                                                                                    | 2.6        | 6            |
| 5  | Stable isotope imprint of hypogene speleogenesis: Lessons from Austrian caves. Chemical Geology, 2021, 572, 120209.                                                                                           | 3.3        | 7            |
| 6  | Spatial and Temporal Planetary Boundary Layer Moistureâ€Source Variability of Crimean Peninsula<br>Precipitation. Earth and Space Science, 2021, 8, e2021EA001727.                                            | 2.6        | 3            |
| 7  | Novel method for determining<br><sup>234</sup> U– <sup>238</sup> U ages of<br>Devils Hole 2 cave calcite (Nevada). Geochronology, 2021, 3, 49-58.                                                             | 2.5        | 2            |
| 8  | Sulfuric acid speleogenesis in the North Caucasus: Sharo-Argun valley Caves (Chechen Republic,) Tj ETQq0 0 0 rg                                                                                               | BT_/Qverlo | ock 10 Tf 50 |
| 9  | Paleohydrology of southwest Nevada (USA) based on groundwater 234U/238U over the past 475 k.y<br>Bulletin of the Geological Society of America, 2020, 132, 793-802.                                           | 3.3        | 8            |
| 10 | Age of the Upper Paleolithic sites in Kapova and Ignatievskaya caves (Southern Ural): revision and<br>interpretations of the radiocarbon dates. Vestnik Archeologii, Antropologii I Etnografii, 2020, , 5-16. | 0.3        | 2            |
|    | Manufament of overgon and hydrogon instantics of analosthem fluid indusion water using                                                                                                                        |            |              |

| 11 | Measurement of oxygen and hydrogen isotopic ratios of speleothem fluid inclusion water using<br>Picarro. Chinese Science Bulletin, 2020, 65, 3626-3634.        | 0.7  | 1  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 12 | Groundwater of the Crimean peninsula: a first systematic study using stable isotopes. Isotopes in Environmental and Health Studies, 2019, 55, 419-437.         | 1.0  | 7  |
| 13 | Enhanced Mediterranean water cycle explains increased humidity during MISÂ3 in North Africa. Climate of the Past, 2019, 15, 1757-1769.                         | 3.4  | 19 |
| 14 | Characteristics of secondary deposits in the Starateley cave (Sverdlovsk Region). Zapiski Rossiiskogo<br>Mineralogicheskogo Obshchestva, 2019, 148, 76-83.     | 0.1  | 0  |
| 15 | Evidence of thermophilisation and elevation-dependent warming during the Last Interglacial in the<br>Italian Alps. Scientific Reports, 2018, 8, 2680.          | 3.3  | 25 |
| 16 | Data on the 14C date obtained from the charcoal figure "Black fox―in Shulgan-Tash (Kapova) cave,<br>Southern Ural, Russia. Data in Brief, 2018, 21, 1101-1105. | 1.0  | 24 |
| 17 | Moisture availability in the southwest United States over the last three glacial-interglacial cycles.<br>Science Advances, 2018, 4, eaau1375.                  | 10.3 | 18 |
| 18 | Stable isotopic composition of atmospheric precipitation on the Crimean Peninsula and its                                                                      | 5.4  | 25 |

controlling factors. Journal of Hydrology, 2018, 565, 61-73.

2

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cryogenic Mineral Formation in Caves. , 2018, , 123-162.                                                                                                                     |      | 14        |
| 20 | Late Palaeolithic cave art and permafrost in the Southern Ural. Scientific Reports, 2018, 8, 12080.                                                                          | 3.3  | 16        |
| 21 | Highâ€resolution isotopic monitoring of cave air CO <sub>2</sub> . Rapid Communications in Mass<br>Spectrometry, 2017, 31, 895-900.                                          | 1.5  | 7         |
| 22 | Hypogene Karst in Austria. Cave and Karst Systems of the World, 2017, , 113-126.                                                                                             | 0.1  | 3         |
| 23 | Hypogene Speleogenesis in the Crimean Piedmont, the Crimea Peninsula. Cave and Karst Systems of the<br>World, 2017, , 407-430.                                               | 0.1  | 2         |
| 24 | Hypogene Karst in the Tyuya-Muyun and the Kara-Tash Massifs (Kyrgyzstan). Cave and Karst Systems of<br>the World, 2017, , 495-507.                                           | 0.1  | 2         |
| 25 | Condensation Corrosion Speleogenesis in the Amargosa Desert and the Tecopa Basin. Cave and Karst<br>Systems of the World, 2017, , 565-573.                                   | 0.1  | 1         |
| 26 | lsotope compositions of C and O of magmatic calcites from the Udachnaya–East pipe kimberlite,<br>Yakutia. Doklady Earth Sciences, 2017, 475, 828-831.                        | 0.7  | 2         |
| 27 | Continental carbonate facies of a Neoproterozoic panglaciation, northâ€east Svalbard. Sedimentology, 2016, 63, 443-497.                                                      | 3.1  | 37        |
| 28 | Response to Comments on "Reconciliation of the Devils Hole climate record with orbital forcing―<br>Science, 2016, 354, 296-296.                                              | 12.6 | 1         |
| 29 | Hypogenic origin, geologic controls and functional organization of a giant cave system in<br>Precambrian carbonates, Brazil. Geomorphology, 2016, 253, 385-405.              | 2.6  | 68        |
| 30 | Hypogene speleogenesis in dolomite host rock by CO2-rich fluids, Kozak Cave (southern Austria).<br>Geomorphology, 2016, 255, 39-48.                                          | 2.6  | 7         |
| 31 | Reconciliation of the Devils Hole climate record with orbital forcing. Science, 2016, 351, 165-168.                                                                          | 12.6 | 44        |
| 32 | Glacial–interglacial temperature change in the tropical West Pacific: AÂcomparison of<br>stalagmite-based paleo-thermometers. Quaternary Science Reviews, 2015, 127, 90-116. | 3.0  | 50        |
| 33 | Condensation-corrosion speleogenesis above a carbonate-saturated aquifer: Devils Hole Ridge,<br>Nevada. Geomorphology, 2015, 229, 17-29.                                     | 2.6  | 11        |
| 34 | Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada.<br>Geoscientific Model Development, 2014, 7, 1583-1607.                      | 3.6  | 0         |
| 35 | Isotope wallrock alteration associated with hypogene karst of the Crimean Piedmont, Ukraine.<br>Chemical Geology, 2014, 377, 31-44.                                          | 3.3  | 14        |
| 36 | Devils Hole paleotemperatures and implications for oxygen isotope equilibrium fractionation. Earth and Planetary Science Letters, 2014, 400, 251-260.                        | 4.4  | 45        |

| #  | Article                                                                                                                                                                                                                                                     | IF          | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 37 | Clumped isotope thermometry of cryogenic cave carbonates. Geochimica Et Cosmochimica Acta, 2014, 126, 541-554.                                                                                                                                              | 3.9         | 31             |
| 38 | Hypogenic speleogenesis in quartzite: The case of Corona 'e Sa Craba Cave (SW Sardinia, Italy).<br>Geomorphology, 2014, 211, 77-88.                                                                                                                         | 2.6         | 21             |
| 39 | Needle-fiber calcite in Kapova Cave (the Southern Urals, Russia): Influence on Upper Paleolithic wall paintings and genesis problems. , 2014, , 265-274.                                                                                                    |             | Ο              |
| 40 | Hydrothermal Caves. , 2012, , 391-397.                                                                                                                                                                                                                      |             | 4              |
| 41 | Design of two crushing devices for release of the fluid inclusion volatiles. Open Geosciences, 2012, 4, 219-224.                                                                                                                                            | 1.7         | 1              |
| 42 | Speleothem record of the last 180Âka in Villars cave (SW France): Investigation of a large δ18O shift<br>between MIS6 and MIS5. Quaternary Science Reviews, 2011, 30, 130-146.                                                                              | 3.0         | 99             |
| 43 | First investigations of an ice core from Eisriesenwelt cave (Austria). Cryosphere, 2011, 5, 81-93.                                                                                                                                                          | 3.9         | 39             |
| 44 | Geochemical and Isotopic Properties of Fluids from Gold-Bearing and Barren Quartz Veins of the<br>Sovetskoye Gold Deposit (Siberia, Russia). Economic Geology, 2010, 105, 375-394.                                                                          | 3.8         | 24             |
| 45 | Evidence for a hypogene paleohydrogeological event at the prospective nuclear waste disposal site<br>Yucca Mountain, Nevada, USA, revealed by the isotope composition of fluid-inclusion water. Earth and<br>Planetary Science Letters, 2010, 289, 583-594. | 4.4         | 9              |
| 46 | Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: a case study<br>from an alpine cave, Entrische Kirche, Austria. International Journal of Earth Sciences, 2009, 98,<br>665-676.                                       | 1.8         | 19             |
| 47 | Hydrogen and oxygen isotopes of water from inclusions in minerals: design of a new crushing system<br>and onâ€line continuousâ€flow isotope ratio mass spectrometric analysis. Rapid Communications in Mass<br>Spectrometry, 2009, 23, 2605-2613.           | 1.5         | 58             |
| 48 | Textural, Elemental, and Isotopic Characteristics of Pleistocene Phreatic Cave Deposits (Jabal Madar,) Tj ETQq0 (                                                                                                                                           | ) 0 rgBT /C | Dverlgck 10 Tf |
| 49 | Search for the causeâ€effect relationship between Miocene silicic volcanism and hydrothermal activity<br>in the unsaturated zone of Yucca Mountain, Nevada: Numerical modeling approach. Journal of<br>Geophysical Research, 2007, 112, .                   | 3.3         | 8              |
| 50 | Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the<br>Yucca Mountain Performance Assessment. Risk Analysis, 2007, 27, 1455-1468.                                                                          | 2.7         | 3              |
| 51 | Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record—is it a viable methodology?. Journal of Contaminant Hydrology, 2005, 77, 209-217.                                                    | 3.3         | 4              |
| 52 | Comment on: "Origin, timing, and temperature of secondary calcite-silica mineral formation at Yucca<br>Mountain, Nevada―by N. S. F. Wilson, J. S. Cline, and Y. V. Amelin. Geochimica Et Cosmochimica Acta,<br>2005, 69, 4387-4390.                         | 3.9         | 9              |
| 53 | Cavity-based secondary mineralization in volcanic tuffs of Yucca Mountain, Nevada: a new type of the polymineral vadose speleothem, or a hydrothermal deposit?. International Journal of Speleology, 2005, 34, 25-44.                                       | 1.0         | 4              |
| 54 | Comment on: "Physical and stable-isotope evidence for formation of secondary calcite and silica in<br>the unsaturated zone, Yucca Mountain, Nevada―by J.F. Whelan, J.B. Paces and Z.E. Peterman. Applied<br>Geochemistry, 2004, 19, 1865-1877.              | 3.0         | 6              |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Identification of the deep-seated component in paleo fluidscirculated through a potential nuclear<br>waste disposal site: Yucca Mountain, Nevada, USA. Journal of Geochemical Exploration, 2003, 78-79,<br>39-43.                                             | 3.2  | 6         |
| 56 | NUCLEAR WASTE: Yucca Mountain. Science, 2002, 296, 659-660.                                                                                                                                                                                                   | 12.6 | 28        |
| 57 | Traces of epigenetic hydrothermal activity at Yucca Mountain, Nevada: preliminary data on the fluid inclusion and stable isotope evidence. Chemical Geology, 2001, 173, 125-149.                                                                              | 3.3  | 25        |
| 58 | Response to Stuckless and others (1998) on "Overview of calcite/opal deposits at or near the proposed<br>high-level nuclear waste site, Yucca Mountain, Nevada, USA: Pedogenic, hypogene, or both?".<br>Environmental Geology, 1999, 38, 77-81.               | 1.2  | 6         |
| 59 | "Overview of calcite/opal deposits at or near the proposed high-level nuclear waste site, Yucca<br>Mountain, Nevada, USA: pedogenic, hypogene, or both" by C.A. Hill, Y.V. Dublyansky, R.S. Harmon, C.M.<br>Schluter. Environmental Geology, 1998, 34, 70-78. | 1.2  | 10        |
| 60 | Transformation of fractal atmospheric aerosol moving through natural cave. Journal of Aerosol Science, 1996, 27, S127-S128.                                                                                                                                   | 3.8  | 1         |
| 61 | Speleogenetic history of the Hungarian hydrothermal karst. Environmental Geology, 1995, 25, 24-35.                                                                                                                                                            | 1.2  | 49        |
| 62 | Overview of calcite/opal deposits at or near the proposed high-level nuclear waste site, Yucca<br>Mountain, Nevada, USA: Pedogenic, hypogene, or both?. Environmental Geology, 1995, 26, 69-88.                                                               | 1.2  | 17        |