Johannes Bloehdorn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7867350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonal evolution in chronic lymphocytic leukemia is scant in relapsed but accelerated in refractory cases after chemo(immune) therapy. Haematologica, 2022, 107, 604-614.	1.7	11
2	Salvage Therapy for Alveolar Echinococcosis—A Case Series. Pathogens, 2022, 11, 333.	1.2	4
3	Obinutuzumab (GA-101), ibrutinib, and venetoclax (GIVe) frontline treatment for high-risk chronic lymphocytic leukemia. Blood, 2022, 139, 1318-1329.	0.6	30
4	The scaffold protein NEDD9 is necessary for leukemia-cell migration and disease progression in a mouse model of chronic lymphocytic leukemia. Leukemia, 2022, 36, 1794-1805.	3.3	1
5	U-RT1 – A new model for Richter transformation. Neoplasia, 2021, 23, 140-148.	2.3	5
6	Integrative prognostic models predict long-term survival after immunochemotherapy in chronic lymphocytic leukemia patients. Haematologica, 2021, , .	1.7	2
7	MARCKS affects cell motility and response to BTK inhibitors in CLL. Blood, 2021, 138, 544-556.	0.6	14
8	Discovery of Candidate DNA Methylation Cancer Driver Genes. Cancer Discovery, 2021, 11, 2266-2281.	7.7	42
9	Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nature Communications, 2021, 12, 5395.	5.8	15
10	Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+ CD8+ TÂcell population that sustains anti-tumor immunity. Immunity, 2021, 54, 2825-2841.e10.	6.6	57
11	Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia, 2020, 34, 115-127.	3.3	23
12	Distribution of alveolar echinococcosis according to environmental and geographical factors in Germany, 1992-2018. Acta Tropica, 2020, 212, 105654.	0.9	8
13	DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 2020, 7, 133.	2.4	6
14	Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood, 2020, 135, 2402-2412.	0.6	83
15	Follow-up in hepatic alveolar echinococcosis under benzimidazole therapy using computed tomography. Chinese Medical Journal, 2020, 133, 1507-1509.	0.9	2
16	Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica, 2020, 105, 2598-2607.	1.7	44
17	Stromal cell protein kinase C-β inhibition enhances chemosensitivity in B cell malignancies and overcomes drug resistance. Science Translational Medicine, 2020, 12, .	5.8	18
18	Genetic Determinants and Evolutionary History of Richter's Syndrome. Blood, 2020, 136, 47-48.	0.6	3

JOHANNES BLOEHDORN

#	Article	IF	CITATIONS
19	Robust Discovery of Candidate DNA Methylation Cancer Drivers. Blood, 2020, 136, 33-34.	0.6	О
20	Multiplatform Profiling Characterizes Functional Networks in Genomically Stable and Instable Chronic Lymphocytic Leukemia. Blood, 2020, 136, 12-13.	0.6	0
21	CLINICAL PRESENTATION AND MOLECULAR CHARACTERISTICS OF CUTANEOUS DLBCL. Hematological Oncology, 2019, 37, 362-362.	0.8	0
22	Simple liver cysts and cystoid lesions in hepatic alveolar echinococcosis: a retrospective cohort study with Hounsfield analysis. Parasite, 2019, 26, 54.	0.8	14
23	Time-to-progression after front-line fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy for chronic lymphocytic leukaemia: a retrospective, multicohort study. Lancet Oncology, The, 2019, 20, 1576-1586.	5.1	26
24	Worldwide literature on epidemiology of human alveolar echinococcosis: a systematic review of research published in the twenty-first century. Infection, 2019, 47, 703-727.	2.3	80
25	Venetoclax resistance and acquired <i>BCL2</i> mutations in chronic lymphocytic leukemia. Haematologica, 2019, 104, e434-e437.	1.7	144
26	IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood, 2019, 134, 534-547.	0.6	51
27	Short telomeres are associated with inferior outcome, genomic complexity, and clonal evolution in chronic lymphocytic leukemia. Leukemia, 2019, 33, 2183-2194.	3.3	19
28	Community-driven development of a modified progression-free survival ratio for precision oncology. ESMO Open, 2019, 4, e000583.	2.0	22
29	S105 GENETIC MARKERS AND OUTCOME IN THE CLL14 TRIAL OF THE GCLLSG COMPARING FRONT LINE OBINUTUZUMAB PLUS CHLORAMBUCIL OR VENETOCLAX IN PATIENTS WITH COMORBIDITY. HemaSphere, 2019, 3, 4.	1.2	4
30	The involvement of microRNA in the pathogenesis of Richter syndrome. Haematologica, 2019, 104, 1004-1015.	1.7	20
31	FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood, 2019, 133, 830-839.	0.6	56
32	Venetoclax Resistance in Mantle Cell Lymphoma Is Mediated By BCL-XL and Can be Circumvent By Inhibiting the BH4 Domain of BCL-2. Blood, 2019, 134, 1507-1507.	0.6	1
33	Telomere Shortening By Terc Knockout in the Eµ-TCL1 Transgenic Murine Model of CLL: Characterization of Disease Development and Survival. Blood, 2019, 134, 1732-1732.	0.6	Ο
34	Telomere length in poor-risk chronic lymphocytic leukemia: associations with disease characteristics and outcome. Leukemia and Lymphoma, 2018, 59, 1614-1623.	0.6	12
35	Lamin B1 regulates somatic mutations and progression of B-cell malignancies. Leukemia, 2018, 32, 364-375.	3.3	25
36	Venetoclax for Patients With Chronic Lymphocytic Leukemia With 17p Deletion: Results From the Full Population of a Phase II Pivotal Trial. Journal of Clinical Oncology, 2018, 36, 1973-1980.	0.8	257

JOHANNES BLOEHDORN

#	Article	IF	CITATIONS
37	NOTCH1 Signaling Is Activated in CLL By Mutations of FBXW7 and Low Expression of USP28 at 11q23. Blood, 2018, 132, 946-946.	0.6	1
38	Primary Extranodal Diffuse Large B-Cell Lymphomas Are Enriched for Mutations in MYD88 and CD79B Blood, 2018, 132, 1701-1701.	0.6	3
39	Integrated Proteomic and Phosphoproteomic Analysis Reveal Novel Targets and Suggest Rationale for Ibrutinib Efficacy in UM-CLL. Blood, 2018, 132, 583-583.	0.6	0
40	lbrutinib Can Induce Complete Remissions and Sustained Responses in Refractory Cutaneous or Leg-Type Diffuse Large B-Cell Lymphoma. Blood, 2018, 132, 4237-4237.	0.6	0
41	MYC Pathway Activation Is Frequently Observed in Treatment-Naive CLL and Defines a Subgroup with Particular Benefit from the Addition of Rituximab to Chemotherapy. Blood, 2018, 132, 1866-1866.	0.6	0
42	Characterization of Mechanisms Underlying Acquired Venetoclax-Resistance in Mantle Cell Lymphoma: BDA-366 As a Potential Treatment Option. Blood, 2018, 132, 1580-1580.	0.6	0
43	High-dose chemotherapy with autologous haematopoietic stem cell support for relapsed or refractory primary CNS lymphoma: a prospective multicentre trial by the German Cooperative PCNSL study group. Leukemia, 2017, 31, 2623-2629.	3.3	72
44	Frequent evolution of copy number alterations in CLL following first-line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia, 2017, 31, 734-738.	3.3	18
45	High-dose methotrexate-based immuno-chemotherapy for elderly primary CNS lymphoma patients (PRIMAIN study). Leukemia, 2017, 31, 846-852.	3.3	134
46	Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia. Leukemia, 2017, 31, 1177-1186.	3.3	8
47	Postibrutinib outcomes in patients with mantle cell lymphoma. Blood, 2016, 127, 1559-1563.	0.6	228
48	Total body irradiation after high-dose cytarabine in mantle cell lymphoma: a comparison of Nordic MCL2, HOVON-45, and European MCL Younger trials. Leukemia, 2016, 30, 1428-1430.	3.3	19
49	The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL. Leukemia, 2015, 29, 2003-2014.	3.3	17
50	PTK2 expression and immunochemotherapy outcome in chronic lymphocytic leukemia. Blood, 2014, 124, 420-425.	0.6	14
51	Alemtuzumab Combined with Dexamethasone, Followed By Alemtuzumab Maintenance or Allo-SCT in "ultra High-risk―CLL: Final Results from the CLL2O Phase II Study. Blood, 2014, 124, 1991-1991.	0.6	11
52	MicroRNAs in Hematologic Malignancies. , 2014, , 67-95.		0
53	High-Resolution Genomic Copy Number Analysis on Sequential Samples from the CLL8 Trial: Relation Between Clonal Evolution and Defects in DNA Damage Response?. Blood, 2014, 124, 1964-1964.	0.6	0
54	High Resolution Genomic Profiling of Primary "Ultra High Risk―and Refractory Chronic Lymphocytic Leukemia: Results from the CLL2O Trial. Blood, 2014, 124, 3288-3288.	0.6	0

JOHANNES BLOEHDORN

#	Article	IF	CITATIONS
55	Genomic Mechanisms of 17p / TP53 Loss in Primary "ultra High-risk―and Refractory Chronic Lymphocytic Leukemia: Results from the CLL2O Trial. Blood, 2014, 124, 2184-2184.	0.6	1
56	Cellular origin and pathophysiology of chronic lymphocytic leukemia. Journal of Experimental Medicine, 2012, 209, 2183-2198.	4.2	227
57	High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood, 2012, 120, 4783-4794.	0.6	179
58	Impact of serum storage conditions on microRNA stability. Leukemia, 2012, 26, 2414-2416.	3.3	133
59	Expression of Cereblon (CRBN) Is Associated with Disease Stage, Genetic Subgroups and Specific Micro-RNAs in Multiple Myeloma. Blood, 2012, 120, 1820-1820.	0.6	3
60	Microrna Expression in Fludarabine-Refractory CLL Implicates Independent Mechanisms of Resistance and Is Associated with Response and Progression Free Survival After Alemtuzumab Treatment: Results From the CLL2H Trial Blood, 2012, 120, 2874-2874.	0.6	0
61	P53 and microRNAs in chronic lymphocytic leukemia. Journal of Nucleic Acids Investigation, 2011, 2, 8.	0.5	1
62	MicroRNAs in Leukemia. , 2011, , 269-285.		0
63	Additional Genetic High-Risk Features Such As 11q Deletion, 17p Deletion, and V3-21 Usage Characterize Discordance of ZAP-70 and VH Mutation Status in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2006, 24, 969-975.	0.8	177
64	Clonal Evolution in Chronic Lymphocytic Leukemia is Scant in Relapsed But Accelerated in Refractory Cases. SSRN Electronic Journal, 0, , .	0.4	0