Sara J Margolin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866984/publications.pdf

Version: 2024-02-01

		201674	155660
57	4,101	27	55
papers	citations	h-index	g-index
58	58	58	8070
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	l'm Not Crying, You're Crying: An Evaluation of the Impact of Emotional Text on Negation Comprehension. Reading Psychology, 2021, 42, 131-149.	1.4	1
2	Comprehension and metacomprehension of negated text. Written Language and Literacy, 2020, 23, 92-108.	0.4	1
3	How Should I Use My Eâ€Reader? An Exploration of the Circumstances Under Which Electronic Presentation of Text Results in Good Comprehension. Mind, Brain, and Education, 2018, 12, 39-48.	1.9	8
4	It may not be that difficult the second time around: the effects of rereading on the comprehension and metacomprehension of negated text. Journal of Research in Reading, 2018, 41, 392-402.	2.0	9
5	Cognitively active older adults' comprehension and metacomprehension of negated text. Experimental Aging Research, 2018, 44, 329-337.	1.2	1
6	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
7	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
8	Treatment Restarting After Discontinuation of Adjuvant Hormone Therapy in Breast Cancer Patients. Journal of the National Cancer Institute, 2017, 109, .	6.3	11
9	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
10	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	2.4	67
11	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
12	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	5.0	43
13	TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget, 2017, 8, 18381-18398.	1.8	14
14	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9
15	Parent of Origin and Prognosis in Familial Breast Cancer in Sweden. Anticancer Research, 2017, 37, 1257-1262.	1.1	O
16	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	1.8	31
17	Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLoS Medicine, 2016, 13, e1002105.	8.4	118
18	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12

#	Article	IF	CITATIONS
19	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
20	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
21	Patient survival and tumor characteristics associated with CHEK2:p.I157T – findings from the Breast Cancer Association Consortium. Breast Cancer Research, 2016, 18, 98.	5.0	39
22	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
23	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	5.0	43
24	Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes and Control, 2016, 27, 679-693.	1.8	21
25	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
26	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
27	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
28	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
29	Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 2016, 25, 2256-2268.	2.9	106
30	A breast and endometrial cancer syndrome. Maturitas, 2016, 87, 3-4.	2.4	0
31	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
32	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
33	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
34	A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients. BMC Cancer, 2015, 15, 978.	2.6	6
35	Tumour spectrum in non-BRCA hereditary breast cancer families in Sweden. Hereditary Cancer in Clinical Practice, 2015, 13, 15.	1.5	11
36	SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget, 2015, 6, 37979-37994.	1.8	20

#	Article	IF	Citations
37	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
38	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
39	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	2.8	14
40	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
41	Older Adults' Comprehension of Transformational and Deactivation Negation. Educational Gerontology, 2015, 41, 604-612.	1.3	6
42	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
43	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	21.4	357
44	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24
45	The SNP rs6500843 in 16p13.3 is associated with survival specifically among chemotherapy-treated breast cancer patients. Oncotarget, 2015, 6, 7390-7407.	1.8	15
46	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
47	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	3 . 5	39
48	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	12.8	16
49	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53
50	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
51	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	2.9	12
52	CYP2D6 and adjuvant tamoxifen: possible differences of outcome in pre- and post-menopausal patients. Pharmacogenomics, 2013, 14, 613-622.	1.3	21
53	Eâ€readers, Computer Screens, or Paper: Does Reading Comprehension Change Across Media Platforms?. Applied Cognitive Psychology, 2013, 27, 512-519.	1.6	113
54	Can Bold Typeface Improve Readers' Comprehension and Metacomprehension of Negation?. Reading Psychology, 2013, 34, 85-99.	1.4	11

SARA J MARGOLIN

#	Article	IF	CITATIONS
55	Metacomprehension and Negation: Assessing Readers' Awareness of the Difficulty of Negated Text. Reading Psychology, 2011, 32, 158-171.	1.4	10
56	<i>Not</i> May Not be Too Difficult: The Effects of Negation on Older Adults' Sentence Comprehension. Educational Gerontology, 2009, 35, 308-322.	1.3	24
57	Individual Differences in Young and Older Adults' Spelling: Do Good Spellers Age Better than Poor Spellers?. Aging, Neuropsychology, and Cognition, 2007, 14, 529-544.	1.3	9