
Harald van Brummelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topology-preserving scan-based immersed isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114648.	6.6	10
2	Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines. Journal of Mechanics, 2022, 38, 204-237.	1.4	10
3	An adaptive isogeometric analysis approach to elastoâ€capillary fluidâ€solid interaction. International Journal for Numerical Methods in Engineering, 2021, 122, 5331-5352.	2.8	11
4	An efficient quasiâ€Newton method for threeâ€dimensional steady free surface flow. International Journal for Numerical Methods in Fluids, 2021, 93, 2581-2610.	1.6	4
5	Image-based modeling of spontaneous imbibition in porous media by a dynamic pore network model. Advances in Water Resources, 2021, 152, 103932.	3.8	29
6	Vanguard developments in computational methods for fluidâ€structure interaction. International Journal for Numerical Methods in Engineering, 2021, 122, 5173-5175.	2.8	1
7	Nitsche's method as a variational multiscale formulation and a resulting boundary layer fine-scale model. Computer Methods in Applied Mechanics and Engineering, 2021, 382, 113878.	6.6	2
8	Reduced order models for finite-volume simulations of turbulent flow around wind-turbine blades Journal of Physics: Conference Series, 2021, 2018, 012042.	0.4	1
9	A Proper Generalized Decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties. Computational Mechanics, 2020, 65, 451-473.	4.0	15
10	Multigrid solvers for immersed finite element methods and immersed isogeometric analysis. Computational Mechanics, 2020, 65, 807-838.	4.0	29
11	Error-estimate-based adaptive integration for immersed isogeometric analysis. Computers and Mathematics With Applications, 2020, 80, 2481-2516.	2.7	26
12	An efficient quasiâ€Newton method for twoâ€dimensional steady free surface flow. International Journal for Numerical Methods in Fluids, 2020, 92, 785-801.	1.6	6
13	Singular Nature of the Elastocapillary Ridge. Physical Review X, 2020, 10, .	8.9	11
14	Entropy Stable Discontinuous Galerkin Finite Element Moment Methods for Compressible Fluid Dynamics. Lecture Notes in Computational Science and Engineering, 2020, , 75-95.	0.3	1
15	Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 2019, 163, 14-30.	3.2	37
16	Preconditioning immersed isogeometric finite element methods with application to flow problems. Computer Methods in Applied Mechanics and Engineering, 2019, 348, 604-631.	6.6	34
17	Binary-fluid–solid interaction based on the Navier–Stokes–Korteweg equations. Mathematical Models and Methods in Applied Sciences, 2019, 29, 995-1036.	3.3	9
18	Fast divergence-conforming reduced basis methods for steady Navier–Stokes flow. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 486-512.	6.6	15

#	Article	IF	CITATIONS
19	Sampling-based stochastic analysis of the PKN model for hydraulic fracturing. Computational Geosciences, 2019, 23, 81-105.	2.4	6
20	Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 421-450.	6.6	27
21	Skeleton-stabilized IsoGeometric Analysis: High-regularity interior-penalty methods for incompressible viscous flow problems. Computer Methods in Applied Mechanics and Engineering, 2018, 337, 324-351.	6.6	16
22	Diffuse-interface two-phase flow models with different densities: A new quasi-incompressible form and a linear energy-stable method. Mathematical Models and Methods in Applied Sciences, 2018, 28, 733-770.	3.3	39
23	Finite element simulation of pressure-loaded phase-field fractures. Meccanica, 2018, 53, 1513-1545.	2.0	8
24	A Posteriori Error Estimation and Adaptivity for Nonlinear Parabolic Equations using IMEX-Galerkin Discretization of Primal and Dual Equations. SIAM Journal of Scientific Computing, 2018, 40, A3371-A3399.	2.8	2
25	Worst-case multi-objective error estimation and adaptivity. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 723-743.	6.6	18
26	Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 219-239.	6.6	9
27	Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 2017, 316, 297-327.	6.6	97
28	Mixed Isogeometric Finite Cell Methods for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 2017, 316, 400-423.	6.6	32
29	8. Binary-fluid–solid interaction based on the Navier–Stokes–Cahn–Hilliard Equations. , 2017, , 283-328.		8
30	A multiscale diffuse-interface model for two-phase flow in porous media. Computers and Fluids, 2016, 141, 212-222.	2.5	7
31	An entropy stable discontinuous Galerkin finite-element moment method for the Boltzmann equation. Computers and Mathematics With Applications, 2016, 72, 1988-1999.	2.7	12
32	Moment Closure Approximations of the Boltzmann Equation Based on \$\$varphi \$\$ φ -Divergences. Journal of Statistical Physics, 2016, 164, 77-104.	1.2	25
33	A fracture-controlled path-following technique for phase-field modeling of brittle fracture. Finite Elements in Analysis and Design, 2016, 113, 14-29.	3.2	71
34	The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 771-779.	1.6	23
35	Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations. Modeling and Simulation in Science, Engineering and Technology, 2016, , 451-462.	0.6	11
36	Duality-based two-level error estimation for time-dependent PDEs: Application to linear and nonlinear parabolic equations. Computer Methods in Applied Mechanics and Engineering, 2015, 288, 83-109.	6.6	14

#	Article	IF	CITATIONS
37	Goal-oriented model adaptivity for viscous incompressible flows. Computational Mechanics, 2015, 55, 1181-1190.	4.0	3
38	A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction. Computer Methods in Applied Mechanics and Engineering, 2015, 284, 637-663.	6.6	22
39	Goal-adaptive Isogeometric Analysis with hierarchical splines. Computer Methods in Applied Mechanics and Engineering, 2014, 270, 270-292.	6.6	58
40	Discontinuities without discontinuity: The Weakly-enforced Slip Method. Computer Methods in Applied Mechanics and Engineering, 2014, 271, 144-166.	6.6	7
41	A finite-element/boundary-element method for large-displacement fluid–structure interaction with potential flow. Computer Methods in Applied Mechanics and Engineering, 2013, 266, 57-69.	6.6	10
42	Shape-Newton Method for Isogeometric Discretizations of Free-Boundary Problems. Computational Methods in Applied Sciences (Springer), 2013, , 85-102.	0.3	2
43	Flux Evaluation in Primal and Dual Boundary-Coupled Problems. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	31
44	A finite-element/boundary-element method for large-displacement fluid-structure interaction. Computational Mechanics, 2012, 50, 779-788.	4.0	30
45	Initial stress in biomechanical models of atherosclerotic plaques. Journal of Biomechanics, 2011, 44, 2376-2382.	2.1	46
46	An investigation of Interface-GMRES(R) for fluid–structure interaction problems with flutter and divergence. Computational Mechanics, 2011, 47, 17-29.	4.0	19
47	Effects of intima stiffness and plaque morphology on peak cap stress. BioMedical Engineering OnLine, 2011, 10, 25.	2.7	92
48	Partitioned iterative solution methods for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 2011, 65, 3-27.	1.6	49
49	Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2738-2757.	6.6	42
50	A discontinuous Galerkin finite-element method for a 1D prototype of the Boltzmann equation. Journal of Computational Physics, 2011, 230, 6115-6135.	3.8	1
51	Goal-oriented adaptive methods for a Boltzmann-type equation. , 2011, , .		2
52	Initial Stress in Biomechanical Models of Atherosclerotic Plaques. , 2011, , .		0
53	On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 3369-3385.	6.6	14
54	Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Domain-Map Linearization Approach. SIAM Journal of Scientific Computing, 2010, 32, 1064-1092.	2.8	16

Harald van Brummelen

#	Article	IF	CITATIONS
55	Goal-Oriented Error Estimation and Adaptivity for Free-Boundary Problems: The Shape-Linearization Approach. SIAM Journal of Scientific Computing, 2010, 32, 1093-1118.	2.8	20
56	Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	2.2	118
57	Mesh association by projection along smoothed-normal-vector fields: Association of closed manifolds. International Journal for Numerical Methods in Engineering, 2008, 73, 493-520.	2.8	1
58	Goalâ€oriented error estimation for Stokes flow interacting with a flexible channel. International Journal for Numerical Methods in Fluids, 2008, 56, 1551-1557.	1.6	12
59	Space/time multigrid for a fluid–structure-interaction problem. Applied Numerical Mathematics, 2008, 58, 1951-1971.	2.1	33
60	Conservation under Incompatibility for Fluid-Solid-Interaction Problems: the NPCL Method. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2007, , 413-432.	0.2	0
61	An \${H^1(mathcal{P}^{mathsf{h})}\$â€Coercive Discontinuous Galerkin Formulation for the Poisson Problem: 1D Analysis. SIAM Journal on Numerical Analysis, 2006, 44, 2671-2698.	2.3	0
62	Error-amplification analysis of subiteration-preconditioned GMRES for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 2124-2148.	6.6	29
63	An interface Newton-Krylov solver for fluid-structure interaction. International Journal for Numerical Methods in Fluids, 2005, 47, 1189-1195.	1.6	83
64	On the adjoint solution of the quasi-1D Euler equations: the effect of boundary conditions and the numerical flux function. International Journal for Numerical Methods in Fluids, 2005, 47, 987-993.	1.6	9
65	On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem. SIAM Journal of Scientific Computing, 2005, 27, 599-621.	2.8	76
66	A monolithic approach to fluid–structure interaction. Computers and Fluids, 2004, 33, 839-848.	2.5	180
67	Numerical solution of steady free-surface flows by the adjoint optimal shape design method. International Journal for Numerical Methods in Fluids, 2003, 41, 3-27.	1.6	8
68	A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. Journal of Computational Physics, 2003, 185, 289-308.	3.8	41
69	Energy conservation under incompatibility for fluid–structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 2727-2748.	6.6	22
70	The relevance of conservation for stability and accuracy of numerical methods for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 4195-4215.	6.6	53
71	Fix for Solution Errors near Interfaces in Two-Fluid Flow Computations. , 2003, , 523-528.		0
72	Riemann-Problem and Level-Set Approaches for Homentropic Two-Fluid Flow Computations. Journal of Computational Physics, 2002, 181, 654-674.	3.8	29

#	Article	IF	CITATIONS
73	Adjoint shape optimization for steady free-surface flows. International Journal for Numerical Methods in Fluids, 2002, 40, 605-614.	1.6	3
74	A Godunov-Type Method for Capturing Water Waves. , 2001, , 949-968.		0
75	Efficient Numerical Solution of Steady Free-Surface Navier–Stokes Flow. Journal of Computational Physics, 2001, 174, 120-137.	3.8	27
76	Numerical Solution of Steady Free-Surface Navier-Stokes Flow. , 2001, , 305-310.		0
77	Inverting elastic dislocations using the Weaklyâ€enforced Slip Method. International Journal for Numerical and Analytical Methods in Geomechanics, 0, , .	3.3	0
78	On the effect of nonlinearity and Jacobian initialization on the convergence of the generalized Broyden quasiâ€Newton method. International Journal for Numerical Methods in Engineering, 0, , .	2.8	1