Yongji Gong

List of Publications by Citations

Source: https://exaly.com/author-pdf/7866738/yongji-gong-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,469 150 132 59 h-index g-index citations papers 6.68 157 20,542 13.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
150	Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. <i>Advanced Materials</i> , 2013 , 25, 2452-6	24	1859
149	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. <i>Nature Materials</i> , 2014 , 13, 1135-42	227	1580
148	Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. <i>ACS Nano</i> , 2014 , 8, 8292-9	16.7	979
147	Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. <i>Nano Letters</i> , 2016 , 16, 1097-103	11.5	794
146	In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8, 119-24	28.7	687
145	A subthermionic tunnel field-effect transistor with an atomically thin channel. <i>Nature</i> , 2015 , 526, 91-5	50.4	622
144	Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014 , 8, 5125-31	16.7	566
143	Fracture toughness of graphene. <i>Nature Communications</i> , 2014 , 5, 3782	17.4	433
142	Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. <i>Nature Communications</i> , 2013 , 4, 2541	17.4	418
141	Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. <i>Nano Letters</i> , 2015 , 15, 6135-41	11.5	401
140	Direct laser-patterned micro-supercapacitors from paintable MoS2 films. <i>Small</i> , 2013 , 9, 2905-10	11	401
139	Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. <i>Nano Letters</i> , 2014 , 14, 442-9	11.5	378
138	Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. <i>ACS Nano</i> , 2014 , 8, 10837-43	16.7	346
137	Ultrafast Zn Intercalation and Deintercalation in Vanadium Dioxide. Advanced Materials, 2018, 30, e180	0 7. 62	331
136	Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. <i>Nano Letters</i> , 2013 , 13, 5408-13	11.5	311
135	Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. <i>Nature Communications</i> , 2016 , 7, 12512	17.4	240
134	Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. <i>Nature Communications</i> , 2015 , 6, 7381	17.4	237

133	A Bottom-Up Approach to Build 3D Architectures from Nanosheets for Superior Lithium Storage. <i>Advanced Functional Materials</i> , 2014 , 24, 125-130	15.6	235
132	Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. <i>Nano Letters</i> , 2013 , 13, 1596-601	11.5	235
131	Graphene-network-backboned architectures for high-performance lithium storage. <i>Advanced Materials</i> , 2013 , 25, 3979-84	24	232
130	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2015 , 27, 1181-1186	9.6	202
129	An Atomically Layered InSe Avalanche Photodetector. <i>Nano Letters</i> , 2015 , 15, 3048-55	11.5	201
128	Atomic Layer Deposition of Stable LiAlF Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling. <i>ACS Nano</i> , 2017 , 11, 7019-7027	16.7	197
127	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. <i>Science Advances</i> , 2017 , 3, eaao3170	14.3	191
126	Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. <i>Nano Letters</i> , 2018 , 18, 3829-3838	11.5	178
125	Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS2). Advanced Materials, 2015, 27, 4640	- 8 4	177
124	Spatially controlled doping of two-dimensional SnS through intercalation for electronics. <i>Nature Nanotechnology</i> , 2018 , 13, 294-299	28.7	169
123	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. <i>Nature Communications</i> , 2014 , 5, 3193	17.4	169
122	Active Light Control of the MoS2 Monolayer Exciton Binding Energy. ACS Nano, 2015 , 9, 10158-64	16.7	153
121	Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. <i>Nature Nanotechnology</i> , 2016 , 11, 465-71	28.7	150
120	Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 4482-	8 7.7	142
119	Strong texturing of lithium metal in batteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 12138-12143	11.5	130
118	Optoelectronic memory using two-dimensional materials. <i>Nano Letters</i> , 2015 , 15, 259-65	11.5	128
117	Synthesis of Millimeter-Scale Transition Metal Dichalcogenides Single Crystals. <i>Advanced Functional Materials</i> , 2016 , 26, 2009-2015	15.6	126
116	Fundamental study on the wetting property of liquid lithium. <i>Energy Storage Materials</i> , 2018 , 14, 345-35	6 9.4	117

115	Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite-Free Metallic Lithium Anodes. <i>Advanced Materials</i> , 2019 , 31, e1901820	24	112
114	Rhenium-Doped and Stabilized MoS Atomic Layers with Basal-Plane Catalytic Activity. <i>Advanced Materials</i> , 2018 , 30, e1803477	24	110
113	Dendrite-Free Metallic Lithium in Lithiophilic Carbonized Metal©rganic Frameworks. <i>Advanced Energy Materials</i> , 2018 , 8, 1703505	21.8	108
112	Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. ACS Nano, 2015, 9, 1165	8 <u>166</u> 7	107
111	CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. <i>ACS Applied Materials & Distributed Materials & Distrib</i>	9.5	107
110	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. <i>Nano Letters</i> , 2016 , 16, 3314-20	11.5	101
109	Boron nitride-graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. <i>Nano Letters</i> , 2014 , 14, 1739-44	11.5	100
108	Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. <i>Nano Research</i> , 2017 , 10, 2386-2394	10	97
107	Uniform Lithium Deposition Assisted by Single-Atom Doping toward High-Performance Lithium Metal Anodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1804019	21.8	95
106	Brittle Fracture of 2D MoSe. <i>Advanced Materials</i> , 2017 , 29, 1604201	24	95
106	Brittle Fracture of 2D MoSe. <i>Advanced Materials</i> , 2017 , 29, 1604201 Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1904369	24	95 93
	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i>	•	
105	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1904369 Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. <i>Advanced Functional</i>	24	93
105	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019, 31, e1904369 Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. <i>Advanced Functional Materials</i> , 2018, 28, 1707379 Synergistic enhancement of electrocatalytic CO reduction to C oxygenates at nitrogen-doped	24 15.6	93
105	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019, 31, e1904369 Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. <i>Advanced Functional Materials</i> , 2018, 28, 1707379 Synergistic enhancement of electrocatalytic CO reduction to C oxygenates at nitrogen-doped nanodiamonds/Cu interface. <i>Nature Nanotechnology</i> , 2020, 15, 131-137 Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte. <i>Advanced Energy Materials</i> ,	24 15.6 28.7	93 92 92
105 104 103	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019, 31, e1904369 Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. <i>Advanced Functional Materials</i> , 2018, 28, 1707379 Synergistic enhancement of electrocatalytic CO reduction to C oxygenates at nitrogen-doped nanodiamonds/Cu interface. <i>Nature Nanotechnology</i> , 2020, 15, 131-137 Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte. <i>Advanced Energy Materials</i> , 2020, 10, 2001257 Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2. <i>ACS</i>	24 15.6 28.7 21.8	93 92 92 92
105 104 103 102	Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries. <i>Advanced Materials</i> , 2019, 31, e1904369 Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. <i>Advanced Functional Materials</i> , 2018, 28, 1707379 Synergistic enhancement of electrocatalytic CO reduction to C oxygenates at nitrogen-doped nanodiamonds/Cu interface. <i>Nature Nanotechnology</i> , 2020, 15, 131-137 Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte. <i>Advanced Energy Materials</i> , 2020, 10, 2001257 Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2. <i>ACS Nano</i> , 2015, 9, 12246-54 Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free	24 15.6 28.7 21.8	93 92 92 92 90

97	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 330-336	21.8	78
96	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. <i>Nature</i> , 2020 , 577, 492-4	.9 6 0.4	76
95	Nitrogen-rich carbon nano-onions for oxygen reduction reaction. <i>Carbon</i> , 2018 , 130, 645-651	10.4	68
94	Tailoring MoS Valley-Polarized Photoluminescence with Super Chiral Near-Field. <i>Advanced Materials</i> , 2018 , 30, e1801908	24	66
93	In Situ Generation of Artificial Solid-Electrolyte Interphases on 3D Conducting Scaffolds for High-Performance Lithium-Metal Anodes. <i>Advanced Energy Materials</i> , 2020 , 10, 1903339	21.8	64
92	Exfoliated MoO3 nanosheets for high-capacity lithium storage. <i>Electrochemistry Communications</i> , 2015 , 52, 67-70	5.1	60
91	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. <i>Nature Materials</i> , 2020 , 19, 867-873	27	58
90	In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 151-160	21.8	57
89	Strong coupling and pressure engineering in WSe2MoSe2 heterobilayers. <i>Nature Physics</i> , 2021 , 17, 92-	9816.2	56
88	Active Control of Plasmon E xciton Coupling in MoS2 I g Hybrid Nanostructures. <i>Advanced Optical Materials</i> , 2016 , 4, 1463-1469	8.1	55
87	Membrane-Free Zn/MnO2 Flow Battery for Large-Scale Energy Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 1902085	21.8	53
86	Layer Engineering of 2D Semiconductor Junctions. <i>Advanced Materials</i> , 2016 , 28, 5126-32	24	53
85	3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator-Metal-Insulator Layered Heterostructures. <i>Advanced Materials</i> , 2021 , 33, e2006247	24	51
84	Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe grown by chemical vapor deposition. <i>Nature Communications</i> , 2021 , 12, 809	17.4	51
83	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19696-19701	13	49
82	Three-Dimensional N-Doped Carbon Nanotube Frameworks on Ni Foam Derived from a Metal-Organic Framework as a Bifunctional Electrocatalyst for Overall Water Splitting. <i>ACS Applied Materials & Description</i> (12), 3592-3602	9.5	48
81	Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. <i>ACS Central Science</i> , 2019 , 5, 719-726	16.8	47
8o	S-Doped Graphene-Regional Nucleation Mechanism for Dendrite-Free Lithium Metal Anodes. Advanced Energy Materials, 2019 , 9, 1804000	21.8	46

79	3D Reduced Graphene Oxide Coated V2O5 Nanoribbon Scaffolds for High-Capacity Supercapacitor Electrodes. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 817-821	3.1	43
78	Conversion of Intercalated MoO to Multi-Heteroatoms-Doped MoS with High Hydrogen Evolution Activity. <i>Advanced Materials</i> , 2020 , 32, e2001167	24	41
77	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. <i>Science Advances</i> , 2021 , 7, eabl3742	14.3	41
76	Gate-Induced Metal-Insulator Transition in MoS by Solid Superionic Conductor LaF. <i>Nano Letters</i> , 2018 , 18, 2387-2392	11.5	39
<i>75</i>	Lateral Bilayer MoS2WS2 Heterostructure Photodetectors with High Responsivity and Detectivity. <i>Advanced Optical Materials</i> , 2019 , 7, 1900815	8.1	39
74	Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. <i>Small</i> , 2020 , 16, e1905620	11	34
73	Scalable Transfer of Suspended Two-Dimensional Single Crystals. <i>Nano Letters</i> , 2015 , 15, 5089-97	11.5	33
72	In-Situ Formed Protecting Layer from Organic/Inorganic Concrete for Dendrite-Free Lithium Metal Anodes. <i>Nano Letters</i> , 2020 , 20, 3911-3917	11.5	30
71	Large-Scale Growth and Field-Effect Transistors Electrical Engineering of Atomic-Layer SnS. <i>Small</i> , 2019 , 15, e1904116	11	29
70	Atomically Resolving Polymorphs and Crystal Structures of In2Se3. <i>Chemistry of Materials</i> , 2019 , 31, 10	143610	149
70 69	Atomically Resolving Polymorphs and Crystal Structures of In2Se3. <i>Chemistry of Materials</i> , 2019 , 31, 10 Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94,	3·3	1 49 28
69	Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94,	3.3	28
69	Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94, Direct growth of MoS 2 single crystals on polyimide substrates. <i>2D Materials</i> , 2017 , 4, 021028 Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in	3.3	28
69 68 67	Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94, Direct growth of MoS 2 single crystals on polyimide substrates. <i>2D Materials</i> , 2017 , 4, 021028 Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS. <i>Nano Letters</i> , 2017 , 17, 5452-5457 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. <i>Nano Letters</i> ,	3·3 5·9 11.5	28 27 27 26
69 68 67 66	Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94, Direct growth of MoS 2 single crystals on polyimide substrates. <i>2D Materials</i> , 2017 , 4, 021028 Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS. <i>Nano Letters</i> , 2017 , 17, 5452-5457 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. <i>Nano Letters</i> , 2015 , 15, 5919-25 Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer	3·3 5·9 11.5	28 27 27 26
69 68 67 66	Valley trion dynamics in monolayer MoSe2. <i>Physical Review B</i> , 2016 , 94, Direct growth of MoS 2 single crystals on polyimide substrates. <i>2D Materials</i> , 2017 , 4, 021028 Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS. <i>Nano Letters</i> , 2017 , 17, 5452-5457 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. <i>Nano Letters</i> , 2015 , 15, 5919-25 Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. <i>Science Bulletin</i> , 2017 , 62, 16-21 Ultrafast probes of electron-hole transitions between two atomic layers. <i>Nature Communications</i> ,	3·3 5·9 11.5 10.6	28 27 27 26 25

61	Direct Cation Exchange in Monolayer MoS_{2} via Recombination-Enhanced Migration. <i>Physical Review Letters</i> , 2019 , 122, 106101	7.4	16
60	Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. <i>Science China Materials</i> , 2020 , 63, 1548-1559	7.1	16
59	Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS Transistors. <i>ACS Nano</i> , 2016 , 10, 9730-9737	16.7	16
58	Recent Advances in Synthesis and Applications of 2D Junctions. <i>Small</i> , 2018 , 14, e1801606	11	16
57	Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. <i>Electrochimica Acta</i> , 2019 , 304, 350-359	6.7	15
56	Photoluminescence and Raman Spectra Oscillations Induced by Laser Interference in Annealing-Created Monolayer WS2 Bubbles. <i>Advanced Optical Materials</i> , 2019 , 7, 1801373	8.1	14
55	Thickness-Controlled Synthesis of CoX2 (X = S, Se, and Te) Single Crystalline 2D Layers with Linear Magnetoresistance and High Conductivity. <i>Chemistry of Materials</i> , 2020 , 32, 2321-2329	9.6	14
54	Ni(OH) Templated Synthesis of Ultrathin Ni S Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. <i>Small</i> , 2021 , 17, e2102097	11	14
53	Growth of Molybdenum Carbide@raphene Hybrids from Molybdenum Disulfide Atomic Layer Template. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600866	4.6	13
52	Solid№apor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. <i>Angewandte Chemie</i> , 2016 , 128, 10814-10819	3.6	13
51	Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. <i>Journal of Energy Chemistry</i> , 2021 , 62, 43-50	12	13
50	Recent advances of phase engineering in group VI transition metal dichalcogenides. <i>Tungsten</i> , 2019 , 1, 46-58	4.6	12
49	Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. <i>Applied Catalysis B: Environmental</i> , 2021 , 301, 120754	21.8	12
48	Self-Healing Nucleation Seeds Induced Long-Term Dendrite-Free Lithium Metal Anode. <i>Nano Letters</i> , 2021 , 21, 7715-7723	11.5	12
47	Vertically Aligned MXene Nanosheet Arrays for High-Rate Lithium Metal Anodes. <i>Advanced Energy Materials</i> ,2200072	21.8	12
46	Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. <i>Materials Today</i> , 2021 , 45, 35-43	21.8	11
45	Grain-boundary-rich polycrystalline monolayer WS film for attomolar-level Hg sensors. <i>Nature Communications</i> , 2021 , 12, 3870	17.4	11
44	Electrochemical CO reduction to ethylene by ultrathin CuO nanoplate arrays <i>Nature Communications</i> , 2022 , 13, 1877	17.4	11

43	Two-Dimensional Ag Nanoparticle Tetramer Array for Surface-Enhanced Raman Scattering Measurements. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22702-22710	3.8	10
42	Designing artificial 2D crystals with site and size controlled quantum dots. <i>Scientific Reports</i> , 2017 , 7, 9965	4.9	10
41	Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. <i>Journal of Energy Chemistry</i> , 2021 , 56, 463-469	12	10
40	Single-Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. <i>Advanced Energy Materials</i> ,210	3 2 68	9
39	Synthesis of magnetic two-dimensional materials by chemical vapor deposition. <i>Nano Research</i> , 2021 , 14, 1789-1801	10	9
38	Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe/h-BN heterostructure. <i>Nature Communications</i> , 2021 , 12, 291	17.4	9
37	Photodetection application of one-step synthesized wafer-scale monolayer MoS2 by chemical vapor deposition. <i>2D Materials</i> , 2020 , 7, 025020	5.9	8
36	One-Step Growth of Spatially Graded MoW S Monolayers with a Wide Span in Composition (from x = 0 to 1) at a Large Scale. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 20979-20986	9.5	7
35	Accelerated Degradation of CrCl3 Nanoflakes Induced by Metal Electrodes: Implications for Remediation in Nanodevice Fabrication. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1597-1603	5.6	7
34	Single-Atom Pt Anchored on Oxygen Vacancy of Monolayer TiCT for Superior Hydrogen Evolution <i>Nano Letters</i> , 2022 ,	11.5	7
33	Cobalt Catalysts Enable Selective Hydrogenation of CO toward Diverse Products: Recent Progress and Perspective. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 10486-10496	6.4	7
32	Contact engineering for two-dimensional semiconductors. <i>Journal of Semiconductors</i> , 2020 , 41, 071901	2.3	7
31	Heteroatoms/molecules to tune the properties of 2D materials. <i>Materials Today</i> , 2021 , 47, 108-130	21.8	7
30	Transition-Metal Substitution-Induced Lattice Strain and Electrical Polarity Reversal in Monolayer WS. ACS Applied Materials & Interfaces, 2020, 12, 18650-18659	9.5	6
29	Constructing Artificial SEI Layer on Lithiophilic MXene Surface for High-Performance Lithium Metal Anodes <i>Advanced Science</i> , 2022 , e2103930	13.6	6
28	Ferroelectric-Modulated MoS Field-Effect Transistors as Multilevel Nonvolatile Memory. <i>ACS Applied Materials & Discourse Memory and Memory and Memory and Materials & Discourse Memory and Memory and</i>	9.5	6
27	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS. <i>ACS Applied Materials & Doped Monolayer WS. ACS Applied Monolayer WS. ACS Applie</i>	9.5	6
26	Lattice Plasmon Induced Large Enhancement of Excitonic Emission in Monolayer Metal Dichalcogenides. <i>Plasmonics</i> , 2017 , 12, 1975-1981	2.4	5

(2021-2020)

25	Utilization of the van der Waals Gap of 2D Materials. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 2010051-0	3.8	5
24	Nillo-Based Nanowire Arrays with Hierarchical CoreBhell Structure Electrodes for High-Performance Supercapacitors. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7580-7587	6.1	4
23	Influence of van der Waals epitaxy on phase transformation behaviors in 2D heterostructure. <i>Applied Physics Letters</i> , 2020 , 116, 021602	3.4	4
22	Effects of composition and temperature on the exciton emission behaviors of Mo(S Se) monolayer: experiment and theory. <i>Nanotechnology</i> , 2020 , 31, 155703	3.4	4
21	High-Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb2O3/Monolayer MoS2 Crystals Grown via Chemical Vapor Deposition. <i>Advanced Optical Materials</i> , 2020 , 8, 2000168	8.1	4
20	Room temperature 2D memristive transistor with optical short-term plasticity 2017 ,		3
19	In-situ constructed three-dimensional MoS2MoN heterostructure as the cathode of lithiumBulfur battery. <i>Rare Metals</i> , 2022 , 41, 1743-1752	5.5	3
18	Altering polythiophene derivative substrates to control the electrodeposition morphology of Au particles toward ultrafine nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 12088-12091	5.8	2
17	High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS films. <i>Biosensors and Bioelectronics</i> , 2021 , 194, 113596	11.8	2
16	Anomalous Number Fluctuation Noise in Localized Transition Metal Dichalcogenide Layers: Generalization of McWhorter Mechanism. <i>MRS Advances</i> , 2018 , 3, 299-305	0.7	1
15	Broadband light absorption and photoresponse enhancement in monolayer WSe2 crystal coupled to Sb2O3 microresonators. <i>Nano Research</i> ,1	10	1
14	Valley Trion Dynamics in Monolayer MoSe2 2016 ,		1
13	Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	1
12	Investigating phase transitions from local crystallographic analysis based on statistical learning of atomic environments in 2D MoS2-ReS2. <i>Applied Physics Reviews</i> , 2021 , 8, 011409	17.3	1
11	Confined PdMo Ultrafine Nanowires in CNTs for Superior Oxygen Reduction Catalysis. <i>Advanced Energy Materials</i> ,2200849	21.8	1
10	Stable Lithium Plating and Stripping Enabled by a LiPON Nanolayer on PP Separator. <i>Small</i> ,2104832	11	1
9	Pathways of Exciton Triggered Hot-Carrier Injection at Plasmonic Metal Transition Metal Dichalcogenide Interface. <i>Advanced Optical Materials</i> ,2100070	8.1	0
8	Atomic-Scale Visualization of Polar Domain Boundaries in Ferroelectric InSe at the Monolayer Limit. Journal of Physical Chemistry Letters, 2021 , 11902-11909	6.4	Ο

7	Ultrasensitive biochemical sensors based on controllably grown films of high-density edge-rich multilayer WS2 islands. <i>Sensors and Actuators B: Chemical</i> , 2021 , 131081	8.5	О
6	Electronic Structure and Coupling of Re Clusters In Monolayer MoS2. <i>Microscopy and Microanalysis</i> , 2019 , 25, 506-507	0.5	
5	Determining the 3D Atomic Coordinates and Crystal Defects in 2D Materials with Picometer Precision. <i>Microscopy and Microanalysis</i> , 2019 , 25, 404-405	0.5	
4	Quantification of Dopant Distribution and the Local Band Gap in Selenium-Doped Molybdenum Disulfide. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1754-1755	0.5	
3	Interfaces in Two-Dimensional Heterostructures of Transition Metal Dichalcogenides. <i>Microscopy and Microanalysis</i> , 2015 , 21, 105-106	0.5	
2	Exchange of Re and Mo atoms in MoS2 driven by Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1702-1703	0.5	
1	Single Atom Imaging and Spectroscopy of Impurities in 2D Materials. <i>Microscopy and Microanalysis</i> , 2016 , 22, 862-863	0.5	