Aseem Z Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866626/publications.pdf

Version: 2024-02-01

201674 214800 3,283 53 27 47 h-index citations g-index papers 56 56 56 3755 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters. Molecular Cell, 2008, 32, 878-887.	9.7	415
2	Genome-Wide Distribution of Yeast RNA Polymerase II and Its Control by Sen1 Helicase. Molecular Cell, 2006, 24, 735-746.	9.7	293
3	TFIIH Kinase Places Bivalent Marks on the Carboxy-Terminal Domain of RNA Polymerase II. Molecular Cell, 2009, 34, 387-393.	9.7	235
4	Defining the sequence-recognition profile of DNA-binding molecules. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 867-872.	7.1	221
5	Two Cyclin-Dependent Kinases Promote RNA Polymerase II Transcription and Formation of the Scaffold Complex. Molecular and Cellular Biology, 2004, 24, 1721-1735.	2.3	160
6	Chemical-genomic dissection of the CTD code. Nature Structural and Molecular Biology, 2010, 17, 1154-1161.	8.2	130
7	Synthetic transcription elongation factors license transcription across repressive chromatin. Science, 2017, 358, 1617-1622.	12.6	110
8	Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. ELife, 2017, 6, .	6.0	109
9	Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity. Cell Reports, 2012, 1, 570-581.	6.4	106
10	Design of Artificial Transcriptional Activators with Rigid Poly-l-proline Linkers. Journal of the American Chemical Society, 2002, 124, 13067-13071.	13.7	105
11	Specificity landscapes of DNA binding molecules elucidate biological function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4544-4549.	7.1	97
12	Modular design of artificial transcription factors. Current Opinion in Chemical Biology, 2002, 6, 765-772.	6.1	96
13	Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5812-5817.	7.1	96
14	Ssu72 Phosphatase-dependent Erasure of Phospho-Ser7 Marks on the RNA Polymerase II C-terminal Domain Is Essential for Viability and Transcription Termination. Journal of Biological Chemistry, 2012, 287, 8541-8551.	3.4	90
15	Towards a minimal motif for artificial transcriptional activators. Chemistry and Biology, 2001, 8, 583-592.	6.0	85
16	Pathway connectivity and signaling coordination in the yeast stressâ€activated signaling network. Molecular Systems Biology, 2014, 10, 759.	7.2	83
17	Quantitative Microarray Profiling of DNA-Binding Molecules. Journal of the American Chemical Society, 2007, 129, 12310-12319.	13.7	70
18	Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization. Molecular Cell, 2016, 63, 433-444.	9.7	69

#	Article	IF	Citations
19	A TAD Further: Exogenous Control of Gene Activation. ACS Chemical Biology, 2007, 2, 62-75.	3.4	65
20	Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif. Nucleic Acids Research, 2018, 46, 11883-11897.	14.5	62
21	Targeted Chemical Wedges Reveal the Role of Allosteric DNA Modulation in Proteinâ^'DNA Assembly. ACS Chemical Biology, 2008, 3, 220-229.	3.4	47
22	Toward Artificial Developmental Regulators. Journal of the American Chemical Society, 2003, 125, 13322-13323.	13.7	46
23	Interactions of Sen1, Nrd1, and Nab3 with Multiple Phosphorylated Forms of the Rpb1 C-Terminal Domain in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 417-429.	3.4	46
24	Emerging Views on the CTD Code. Genetics Research International, 2012, 2012, 1-19.	2.0	45
25	RNA sequences that work as transcriptional activating regions. Nucleic Acids Research, 2003, 31, 1565-1570.	14.5	39
26	De novo design of programmable inducible promoters. Nucleic Acids Research, 2019, 47, 10452-10463.	14.5	37
27	Mapping Polyamide–DNA Interactions in Human Cells Reveals a New Design Strategy for Effective Targeting of Genomic Sites. Angewandte Chemie - International Edition, 2014, 53, 10124-10128.	13.8	36
28	Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. Nature Chemical Biology, 2019, 15, 123-131.	8.0	26
29	Expanding the specificity of DNA targeting by harnessing cooperative assembly. Biochimie, 2008, 90, 1015-1025.	2.6	24
30	CSI–FID: High throughput label-free detection of DNA binding molecules. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3779-3782.	2.2	24
31	Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3944-E3953.	7.1	24
32	Reprogramming cell fate with a genome-scale library of artificial transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8257-E8266.	7.1	23
33	Sequence-Specificity and Energy Landscapes of DNA-Binding Molecules. Methods in Enzymology, 2011, 497, 3-30.	1.0	22
34	Synthetic genome readers target clustered binding sites across diverse chromatin states. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7418-E7427.	7.1	20
35	Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochemical Journal, 2014, 462, 397-413.	3.7	16
36	Specificity landscapes unmask submaximal binding site preferences of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10586-E10595.	7.1	16

#	Article	IF	Citations
37	Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2346-2349.	7.1	14
38	CSI-Tree: a regression tree approach for modeling binding properties of DNA-binding molecules based on cognate site identification (CSI) data. Nucleic Acids Research, 2008, 36, 3171-3184.	14.5	14
39	Reprogramming cell fate with artificial transcription factors. FEBS Letters, 2018, 592, 888-900.	2.8	13
40	Mapping Polyamide–DNA Interactions in Human Cells Reveals a New Design Strategy for Effective Targeting of Genomic Sites. Angewandte Chemie, 2014, 126, 10288-10292.	2.0	10
41	A Partner Evokes Latent Differences between Hox Proteins. Cell, 2011, 147, 1220-1221.	28.9	9
42	Chemical crosshairs on the central dogma. , 2007, 3, 2-7.		8
43	Riboactivators: Transcription activation by noncoding RNA. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 50-61.	5.2	7
44	Fusion proteins form onco-condensates. Nature Structural and Molecular Biology, 2021, 28, 543-545.	8.2	6
45	Sliding on DNA: From Peptides to Small Molecules. Angewandte Chemie - International Edition, 2016, 55, 15110-15114.	13.8	5
46	Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome. PLoS ONE, 2020, 15, e0243905.	2.5	5
47	Genome-wide Mapping of Drug-DNA Interactions in Cells with COSMIC (Crosslinking of Small) Tj ETQq1 1 0.784.	314.ggBT /	Overlock 10
48	A chemoprobe tracks its target. Journal of Biological Chemistry, 2019, 294, 8323-8324.	3.4	1
49	Sliding on DNA: From Peptides to Small Molecules. Angewandte Chemie, 2016, 128, 15334-15338.	2.0	0
50	Blocking the Enablers: Selective Inhibition of CDK9 Reins in an Unchecked Master Regulator. Cell Chemical Biology, 2021, 28, 113-115.	5.2	0
51	Engineering small molecules that nucleate assembly of protein complexes. FASEB Journal, 2008, 22, 411.2.	0.5	0
52	Chemicalâ€genomic dissection of the CTD code. FASEB Journal, 2010, 24, 831.1.	0.5	0
53	Manipulating Cellular Trafficking Positively Affects Synâ€TEF Function in Human Tissue. FASEB Journal, 2019, 33, lb178.	0.5	0