Aseem Z Ansari

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7866626/aseem-z-ansari-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

53	2,713 citations	25	52
papers		h-index	g-index
56 ext. papers	3,032 ext. citations	11.4 avg, IF	4.61 L-index

#	Paper	IF	Citations
53	Fusion proteins form onco-condensates. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 543-545	17.6	2
52	Blocking the Enablers: Selective Inhibition of CDK9 Reins in an Unchecked Master Regulator. <i>Cell Chemical Biology</i> , 2021 , 28, 113-115	8.2	
51	Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome. <i>PLoS ONE</i> , 2020 , 15, e0243905	3.7	1
50	De novo design of programmable inducible promoters. <i>Nucleic Acids Research</i> , 2019 , 47, 10452-10463	20.1	12
49	A chemoprobe tracks its target. <i>Journal of Biological Chemistry</i> , 2019 , 294, 8323-8324	5.4	O
48	Manipulating Cellular Trafficking Positively Affects Syn-TEF Function in Human Tissue. <i>FASEB Journal</i> , 2019 , 33, lb178	0.9	
47	Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner. <i>Nature Chemical Biology</i> , 2019 , 15, 123-131	11.7	15
46	Reprogramming cell fate with artificial transcription factors. FEBS Letters, 2018, 592, 888-900	3.8	10
45	Flexibility and structure of flanking DNA impact transcription factor affinity for its core motif. <i>Nucleic Acids Research</i> , 2018 , 46, 11883-11897	20.1	24
44	Specificity landscapes unmask submaximal binding site preferences of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10586-E10	5 95 .5	7
43	Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E3944-E3953	11.5	18
42	Synthetic transcription elongation factors license transcription across repressive chromatin. <i>Science</i> , 2017 , 358, 1617-1622	33.3	68
41	Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. <i>ELife</i> , 2017 , 6,	8.9	56
40	Sliding on DNA: From Peptides to Small Molecules. <i>Angewandte Chemie</i> , 2016 , 128, 15334-15338	3.6	
39	Synthetic genome readers target clustered binding sites across diverse chromatin states. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7418-E742	7 ^{11.5}	12
38	Sliding on DNA: From Peptides to Small Molecules. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15110-15114	16.4	5
37	Genome-wide Mapping of Drug-DNA Interactions in Cells with COSMIC (Crosslinking of Small Molecules to Isolate Chromatin). <i>Journal of Visualized Experiments</i> , 2016 , e53510	1.6	1

(2009-2016)

36	Reprogramming cell fate with a genome-scale library of artificial transcription factors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E8257-E8266	11.5	20
35	Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization. <i>Molecular Cell</i> , 2016 , 63, 433-44	17.6	47
34	Mapping polyamide-DNA interactions in human cells reveals a new design strategy for effective targeting of genomic sites. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10124-8	16.4	30
33	Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. <i>Biochemical Journal</i> , 2014 , 462, 397-413	3.8	16
32	Mapping Polyamide DNA Interactions in Human Cells Reveals a New Design Strategy for Effective Targeting of Genomic Sites. <i>Angewandte Chemie</i> , 2014 , 126, 10288-10292	3.6	9
31	Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. <i>Molecular Systems Biology</i> , 2014 , 10, 759	12.2	64
30	Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. <i>Cell Reports</i> , 2012 , 1, 570-81	10.6	86
29	Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. <i>Eukaryotic Cell</i> , 2012 , 11, 417-29		37
28	Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. <i>Journal of Biological Chemistry</i> , 2012 , 287, 8541-51	5.4	81
27	Emerging Views on the CTD Code. <i>Genetics Research International</i> , 2012 , 2012, 347214	О	39
26	A partner evokes latent differences between Hox proteins. <i>Cell</i> , 2011 , 147, 1220-1	56.2	8
25	Sequence-specificity and energy landscapes of DNA-binding molecules. <i>Methods in Enzymology</i> , 2011 , 497, 3-30	1.7	20
24	Chemical-genomic dissection of the CTD code. <i>Nature Structural and Molecular Biology</i> , 2010 , 17, 1154-6	5 1 7.6	119
23	Specificity landscapes of DNA binding molecules elucidate biological function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 4544-9	11.5	81
22	Chemical-genomic dissection of the CTD code. FASEB Journal, 2010, 24, 831.1	0.9	
21	Riboactivators: transcription activation by noncoding RNA. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2009 , 44, 50-61	8.7	7
20	CSI-FID: high throughput label-free detection of DNA binding molecules. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2009 , 19, 3779-82	2.9	21
19	TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. <i>Molecular Cell</i> , 2009 , 34, 387-93	17.6	2 10

18	A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. <i>Molecular Cell</i> , 2008 , 32, 878-87	17.6	346
17	Expanding the specificity of DNA targeting by harnessing cooperative assembly. <i>Biochimie</i> , 2008 , 90, 1015-25	4.6	23
16	Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly. <i>ACS Chemical Biology</i> , 2008 , 3, 220-9	4.9	41
15	CSI-Tree: a regression tree approach for modeling binding properties of DNA-binding molecules based on cognate site identification (CSI) data. <i>Nucleic Acids Research</i> , 2008 , 36, 3171-84	20.1	12
14	Engineering small molecules that nucleate assembly of protein complexes. FASEB Journal, 2008, 22, 41	1 2 9	
13	Quantitative microarray profiling of DNA-binding molecules. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12310-9	16.4	61
12	A TAD further: exogenous control of gene activation. ACS Chemical Biology, 2007, 2, 62-75	4.9	59
11	Chemical crosshairs on the central dogma 2007 , 3, 2-7		8
10	Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 5812-7	11.5	90
9	Defining the sequence-recognition profile of DNA-binding molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 867-72	11.5	195
8	Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. <i>Molecular Cell</i> , 2006 , 24, 735-746	17.6	246
7	Transcriptional activating regions target attached substrates to a cyclin-dependent kinase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2346-9	11.5	14
6	Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1721-35	4.8	147
5	Toward artificial developmental regulators. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13322	-316.4	43
4	RNA sequences that work as transcriptional activating regions. <i>Nucleic Acids Research</i> , 2003 , 31, 1565-7	020.1	35
3	Modular design of artificial transcription factors. Current Opinion in Chemical Biology, 2002 , 6, 765-72	9.7	89
2	Design of artificial transcriptional activators with rigid poly-L-proline linkers. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13067-71	16.4	99
1	Towards a minimal motif for artificial transcriptional activators. <i>Chemistry and Biology</i> , 2001 , 8, 583-92		79