Diana Isolda Clotilde Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7866564/publications.pdf

Version: 2024-02-01

54 papers

1,851 citations

236925 25 h-index 265206 42 g-index

54 all docs

54 docs citations 54 times ranked 1794 citing authors

#	Article	IF	CITATIONS
1	Meloidogyne-SP4 effector gene silencing reduces reproduction of root-knot nematodes in rice (Oryza) Tj ETQq1 1	0.784314	gBT /Overl
2	Proteome dataset of Hemileia vastatrix by LC–MS/MS label-free identification. Data in Brief, 2022, 43, 108433.	1.0	0
3	The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiological and Molecular Plant Pathology, 2021, 114, 101630.	2.5	8
4	Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Experimental Parasitology, 2021, 229, 108153.	1.2	7
5	Analyses of the Root-Knot Nematode (Meloidogyne graminicola) Transcriptome during Host Infection Highlight Specific Gene Expression Profiling in Resistant Rice Plants. Pathogens, 2020, 9, 644.	2.8	15
6	Enzymology, Histological and Ultrastructural Effects of Ar-Turmerone on Culex pipiens pallens Larvae. Insects, 2020, 11, 336.	2.2	5
7	Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics, 2020, 295, 1063-1078.	2.1	14
8	Searching in Silico Novel Targets for Specific Coffee Rust Disease Control. Lecture Notes in Computer Science, 2020, , 109-115.	1.3	1
9	Development of Diagnostic SCAR Markers for <i>Meloidogyne graminicola</i> , <i>M. oryzae</i> , and <i>M. salasi</i> Associated with Irrigated Rice Fields in Americas. Plant Disease, 2019, 103, 83-88.	1.4	12
10	A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Meloidogyne incognita Parasitism in Plants. Molecules, 2019, 24, 3798.	3.8	11
11	Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. Planta, 2019, 250, 1215-1227.	3.2	23
12	Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 2018, 270, 72-84.	3.6	52
13	Special issue "Deepen knowledge in plant pathology for innovative agroecology― European Journal of Plant Pathology, 2018, 152, 853-854.	1.7	O
14	Early responses of coffee immunity-related genes to root-knot nematode infection. Physiological and Molecular Plant Pathology, 2017, 100, 142-150.	2.5	7
15	Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots. Annals of Botany, 2017, 119, 885-899.	2.9	54
16	Dual RNAâ€seq reveals <i>Meloidogyne graminicola</i> transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 2016, 17, 860-874.	4.2	48
17	Seed-Specific Stable Expression of the $\hat{l}\pm$ -All Inhibitor in Coffee Grains and the In Vivo Implications for the Development of the Coffee Berry Borer. Tropical Plant Biology, 2015, 8, 98-107.	1.9	5
18	Recent Advances in Understanding Plant–Nematode Interactions in Monocots. Advances in Botanical Research, 2015, 73, 189-219.	1.1	8

#	Article	IF	CITATIONS
19	Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. Frontiers in Plant Science, 2014, 5, 88.	3.6	25
20	Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons. Rice, 2014, 7, 23.	4.0	45
21	Biological control mechanisms of D-pinitol against powdery mildew in cucumber. Physiological and Molecular Plant Pathology, 2014, 88, 52-60.	2.5	14
22	Plant-Parasitic Nematode Infections in Rice: Molecular and Cellular Insights. Annual Review of Phytopathology, 2014, 52, 135-153.	7.8	123
23	12 Rust Fungi: Achievements and Future Challenges on Genomics and Host–Parasite Interactions. , 2013, , 315-341.		1
24	Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Reports, 2013, 32, 1263-1276.	5.6	19
25	Expression profiling of genes involved in the biotrophic colonisation of Coffea arabica leaves by Hemileia vastatrix. European Journal of Plant Pathology, 2012, 133, 261-277.	1.7	14
26	Cellular and molecular analyses of coffee resistance to Hemileia vastatrix and nonhost resistance to Uromyces vignae in the resistance-donor genotype HDT832/2. European Journal of Plant Pathology, 2012, 133, 141-157.	1.7	32
27	454â€pyrosequencing of <i>Coffea arabica</i> leaves infected by the rust fungus <i>Hemileia vastatrix</i> reveals <i>in planta</i> êexpressed pathogenâ€secreted proteins and plant functions in a late compatible plant–rust interaction. Molecular Plant Pathology, 2012, 13, 17-37.	4.2	81
28	Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biology, 2011, 115, 891-901.	2.5	36
29	Identification and characterization of the Non-race specific Disease Resistance 1 (NDR1) orthologous protein in coffee. BMC Plant Biology, 2011, 11, 144.	3.6	22
30	Identification of coffee WRKY transcription factor genes and expression profiling in resistance responses to pathogens. Tree Genetics and Genomes, 2010, 6, 767-781.	1.6	34
31	Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea arabica. European Journal of Plant Pathology, 2010, 127, 365-373.	1.7	36
32	Non-host resistance responses of <i>Arabidopsis thaliana</i> to the coffee leaf rust fungus (<i>Hemileia vastatrix</i>). Botany, 2010, 88, 621-629.	1.0	22
33	Transgenic coffee fruits from Coffea arabica genetically modified by bombardment. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 532-539.	2.1	21
34	Biphasic haustorial differentiation of coffee rust (<i> Hemileia vastatrix</i> race II) associated with defence responses in resistant and susceptible coffee cultivars. Plant Pathology, 2009, 58, 944-955.	2.4	30
35	Differentially expressed genes in cotton plant genotypes infected with Meloidogyne incognita. Plant Science, 2009, 177, 492-497.	3.6	9
36	Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genetics and Genomes, 2008, 4, 379-390.	1.6	26

#	Article	IF	CITATIONS
37	Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Science, 2006, 170, 1045-1051.	3.6	47
38	Assessing the transmission service risk. International Journal of Electrical Power and Energy Systems, 2006, 28, 119-126.	5.5	2
39	Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology, 2006, 18, 119-147.	0.5	179
40	Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia) Tj ETQq0 0 0 rgB	T /Qverloc 4.2	k 10 Tf 50 62 73
41	Heat shock-induced susceptibility of green coffee leaves and berries to Colletotrichum gloeosporioides and its association to PR and hsp70 gene expression. Physiological and Molecular Plant Pathology, 2003, 63, 181-190.	2.5	25
42	Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 129-138.	2.1	38
43	Transposable Elements in Fungal Pathogens: New Diagnostic Tools. , 2002, , 171-192.		O
44	Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytologist, 2001, 149, 115-125.	7.3	40
45	Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity, 2001, 86, 451-458.	2.6	65
46	Genetic diversity among isolates of Fusariumoxysporum f.sp. canariensis. Plant Pathology, 2000, 49, 155-164.	2.4	16
47	Rapid Detection of the Fusarium oxysporum Lineage Containing the Canary Island Date Palm Wilt Pathogen. Phytopathology, 1999, 89, 407-413.	2.2	30
48	Trifling variation in truffles. Nature, 1998, 394, 734-734.	27.8	92
49	Systematic Numbering of Vegetative Compatibility Groups in the Plant Pathogenic Fungus Fusarium oxysporum. Phytopathology, 1998, 88, 30-32.	2.2	76
50	<i>Fot</i> 1 Insertions in the <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> Genome Provide Diagnostic PCR Targets for Detection of the Date Palm Pathogen. Applied and Environmental Microbiology, 1998, 64, 633-636.	3.1	47
51	Title is missing!. European Journal of Plant Pathology, 1997, 103, 485-490.	1.7	18
52	Variability of nuclear and mitochondrial ribosomal DNA of a truffle species (Tuber aestivum). Mycological Research, 1996, 100, 547-550.	2.5	27
53	Characterization of a Single Clonal Lineage ofFusarium oxysporumf. sp.albedinisCausing Bayoud Disease of Date Palm in Morocco. Phytopathology, 1996, 86, 787.	2.2	65
54	Differentiation of Fusarium oxysporumf. sp.vasinfectumRaces on Cotton by Random Amplified Polymorphic DNA (RAPD) Analysis. Phytopathology, 1994, 84, 622.	2.2	151