
Hava F Rapoport

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865967/publications.pdf Version: 2024-02-01

ΗΛΛΛ Ε ΡΛΟΟΟΟΤ

#	Article	IF	CITATIONS
1	Floral Quality Characterization in Olive Progenies from Reciprocal Crosses. Plants, 2022, 11, 1285.	3.5	1
2	A new approach for early selection of short juvenile period in olive progenies. Scientia Horticulturae, 2021, 281, 109993.	3.6	5
3	Fruit growth and sink strength in olive (Olea europaea) are related to cell number, not to tissue size. Functional Plant Biology, 2020, 47, 1098.	2.1	8
4	Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. Plant Disease, 2019, 103, 2559-2568.	1.4	9
5	Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 2019, 215, 1.	1.2	21
6	Fruit, mesocarp, and endocarp responses to crop load and to different estimates of source: sink ratio in olive (cv. Arauco) at final harvest. Scientia Horticulturae, 2018, 234, 49-57.	3.6	14
7	Interaction between mycorrhization with Glomus intraradices and phosphorus in nursery olive plants. Scientia Horticulturae, 2018, 233, 249-255.	3.6	20
8	Chilling accumulation, dormancy release temperature, and the role of leaves in olive reproductive budburst: Evaluation using shoot explants. Scientia Horticulturae, 2018, 231, 241-252.	3.6	24
9	Olive inflorescence and flower development as affected by irradiance received in different positions of an east-west hedgerow. Acta Horticulturae, 2018, , 109-114.	0.2	2
10	Diversity of root-knot nematodes of the genus Meloidogyne Göeldi, 1892 (Nematoda: Meloidogynidae) associated with olive plants and environmental cues regarding their distribution in southern Spain. PLoS ONE, 2018, 13, e0198236.	2.5	33
11	Integrated overview of olive reproductive bud dormancy and biennial bearing. Acta Horticulturae, 2018, , 97-102.	0.2	ο
12	The effect of irrigation regime on histological parameters of Japanese plum fruits (â€~Angeleno'). Acta Horticulturae, 2017, , 233-238.	0.2	2
13	Olive floral development in different hedgerow positions and orientations as affected by irradiance. Scientia Horticulturae, 2017, 225, 226-234.	3.6	14
14	Assessment of quantitative parameters for evaluating impact bruising structural damage in olive fruit tissue. Scientia Horticulturae, 2017, 224, 293-295.	3.6	1
15	Olive fruit growth, tissue development and composition as affected by irradiance received in different hedgerow positions and orientations. Scientia Horticulturae, 2016, 198, 284-293.	3.6	21
16	Distribution and timing of cell damage associated with olive fruit bruising and its use in analyzing susceptibility. Postharvest Biology and Technology, 2016, 111, 117-125.	6.0	22
17	Olive Biology. Compendium of Plant Genomes, 2016, , 13-25.	0.5	13
18	Host reaction of Aloe vera infected by Meloidogyne incognita and M. javanica in Crete Island (Greece). European Journal of Plant Pathology, 2015, 142, 887-892.	1.7	3

HAVA F RAPOPORT

#	Article	IF	CITATIONS
19	Effect of varied summer deficit irrigation on components of olive fruit growth and development. Agricultural Water Management, 2014, 137, 84-91.	5.6	28
20	Olive embryo in vitro germination potential: role of explant configuration and embryo structure among cultivars. Plant Cell, Tissue and Organ Culture, 2014, 118, 409-417.	2.3	6
21	Effects of tetraploidy on olive floral and fruit biology. Scientia Horticulturae, 2014, 179, 198-203.	3.6	6
22	IRRIGATION WITHHOLDING EFFECTS ON OLIVE REPRODUCTIVE BUD DEVELOPMENT FOR CONDITIONS WITH INSUFFICIENT WINTER CHILLING. Acta Horticulturae, 2014, , 113-119.	0.2	6
23	THE REPRODUCTIVE BIOLOGY OF THE OLIVE TREE AND ITS RELATIONSHIP TO EXTREME ENVIRONMENTAL CONDITIONS. Acta Horticulturae, 2014, , 41-50.	0.2	17
24	FRUIT AND TISSUE RESPONSES OF 'ARAUCO' OLIVE FRUITS TO CROP LOAD IN ARID ARGENTINA. Acta Horticulturae, 2014, , 89-94.	0.2	2
25	OLIVE FRUIT GROWTH AND PRODUCTIVITY UNDER DIFFERENT IRRIGATION REGIMES AND CROP LOADS. Acta Horticulturae, 2014, , 287-292.	0.2	1
26	Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrigation Science, 2013, 31, 37-47.	2.8	68
27	Fruit pit hardening: physical measurement during olive fruit growth. Annals of Applied Biology, 2013, 163, 200-208.	2.5	40
28	Floral quality components of a new olive cultivar and its parents. Scientia Horticulturae, 2013, 154, 17-19.	3.6	13
29	Cell and tissue dynamics of olive endocarp sclerification vary according to water availability. Physiologia Plantarum, 2013, 149, 571-582.	5.2	25
30	OVERCOMING JUVENILITY IN AN OLIVE BREEDING PROGRAM. Acta Horticulturae, 2012, , 221-226.	0.2	2
31	Tissue size and cell number in the olive (Olea europaea) ovary determine tissue growth and partitioning in the fruit. Functional Plant Biology, 2012, 39, 580.	2.1	31
32	Quantitative Analysis of Cell Organization in the External Region of the Olive Fruit. International Journal of Plant Sciences, 2012, 173, 993-1004.	1.3	19
33	Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Scientia Horticulturae, 2012, 143, 157-166.	3.6	15
34	Morphological, histological and ultrastructural changes in the olive pistil during flowering. Sexual Plant Reproduction, 2012, 25, 133-146.	2.2	30
35	Influence of water deficits at different times during olive tree inflorescence and flower development. Environmental and Experimental Botany, 2012, 77, 227-233.	4.2	80
36	Anatomy of the olive inflorescence axis at flowering and fruiting. Scientia Horticulturae, 2011, 129, 213-219.	3.6	11

Hava F Rapoport

#	Article	IF	CITATIONS
37	Early growth habit and vigour parameters in olive seedlings. Scientia Horticulturae, 2011, 129, 761-768.	3.6	17
38	Differences in ovary size among olive (Olea europaea L.) cultivars are mainly related to cell number, not to cell size. Scientia Horticulturae, 2011, 130, 185-190.	3.6	23
39	Cultivar-based fruit size in olive depends on different tissue and cellular processes throughout growth. Scientia Horticulturae, 2011, 130, 445-451.	3.6	62
40	DEFICIT IRRIGATION EFFECTS ON YIELD COMPONENTS OF OLIVE TREES DURING THE ONSET OF FRUIT PRODUCTION. Acta Horticulturae, 2011, , 291-296.	0.2	2
41	CULTIVAR SUSCEPTIBILITY AND ANATOMICAL EVALUATION OF TABLE OLIVE FRUIT BRUISING. Acta Horticulturae, 2011, , 419-424.	0.2	23
42	Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europaea L.). Trees - Structure and Function, 2011, 25, 823-832.	1.9	48
43	IRRIGATION DIFFERENTLY AFFECTS ENDOCARP AND MESOCARP GROWTH DURING OLIVE FRUIT DEVELOPMENT. Acta Horticulturae, 2011, , 297-302.	0.2	6
44	Olive seedling first-flowering position and management. Scientia Horticulturae, 2010, 124, 74-77.	3.6	22
45	Optimizing Early Flowering and Pre-selection for Short Juvenile Period in Olive Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 519-522.	1.0	8
46	Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiology, 2009, 29, 1575-1585.	3.1	92
47	Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees - Structure and Function, 2009, 23, 181-187.	1.9	22
48	Identifying the location of olive fruit abscission. Scientia Horticulturae, 2009, 120, 292-295.	3.6	11
49	MORPHOLOGICAL AND HISTOLOGICAL CHARACTERISTICS RELATED WITH PHASE CHANGE (JUVENILE/ADULT) IN OLIVE LEAVES AND ITS DETERMINATION BY NEAR INFRARED REFLECTANCE SPECTROSCOPY. Acta Horticulturae, 2009, , 449-452.	0.2	1
50	Structural organization and cytochemical features of the pistil in Olive (Olea europaea L.) cv. Picual at anthesis. Sexual Plant Reproduction, 2008, 21, 99-111.	2.2	41
51	Nitrogen status influence on olive tree flower quality and ovule longevity. Environmental and Experimental Botany, 2008, 64, 113-119.	4.2	60
52	Posidonia oceanica seedling root structure and development. Aquatic Botany, 2008, 88, 203-210.	1.6	10
53	New approach for using trunk growth rate and endocarp development in the irrigation scheduling of young olive orchards. Scientia Horticulturae, 2008, 115, 244-251.	3.6	22
54	Olive fruit pulp and pit growth under differing nutrient supply. Scientia Horticulturae, 2008, 117, 182-184.	3.6	10

HAVA F RAPOPORT

#	Article	IF	CITATIONS
55	<i>Posidonia oceanica</i> seeds from drift origin: viability, germination and early plantlet development. Botanica Marina, 2008, 51, 1-9.	1.2	13
56	Influence of temperature on the growth and development of olive (<i>Olea europaea</i> L.) trees. Journal of Horticultural Science and Biotechnology, 2008, 83, 171-176.	1.9	43
57	INTERACTION BETWEEN SHOOT GROWTH AND REPRODUCTIVE BEHAVIOR IN OLIVE TREES. Acta Horticulturae, 2008, , 453-457.	0.2	4
58	SEASONAL EVOLUTION OF TRUNK DIAMETER FLUCTUATIONS IN FULL IRRIGATED OLIVE TREES. Acta Horticulturae, 2008, , 375-379.	0.2	0
59	Productivity of olive trees with different water status and crop load. Journal of Horticultural Science and Biotechnology, 2007, 82, 648-656.	1.9	105
60	Plant-Parasitic Nematodes Infecting Grapevine in Southern Spain and Susceptible Reaction to Root-Knot Nematodes of Rootstocks Reported as Moderately Resistant. Plant Disease, 2007, 91, 1147-1154.	1.4	37
61	Suitability of weed species prevailing in Spanish vineyards as hosts for root-knot nematodes. European Journal of Plant Pathology, 2007, 120, 43-51.	1.7	17
62	Anatomical response of olive (<i>Olea europaea</i> L.) to freezing temperatures. Journal of Horticultural Science and Biotechnology, 2006, 81, 783-790.	1.9	6
63	Seed and early plantlet structure of the Mediterranean seagrass Posidonia oceanica. Aquatic Botany, 2005, 82, 269-283.	1.6	18
64	Differences in Feeding Sites Induced by Root-Knot Nematodes, Meloidogyne spp., in Chickpea. Phytopathology, 2005, 95, 368-375.	2.2	34
65	CHARACTERISATION AND EVALUATION OF SPECIES OF THE BORAGINACEAE FAMILY AS SOURCE OF GAMMA-LINOLENIC ACID FOR MEDITERRANEAN CONDITIONS. Acta Horticulturae, 2004, , 231-237.	0.2	5
66	THE EFFECT OF IRRIGATION ON FRUIT DEVELOPMENT OF OLIVE CULTIVARS 'FRANTOIO' AND 'LECCINO'. Acta Horticulturae, 2004, , 291-295.	0.2	0
67	CELL DIVISION AND EXPANSION IN THE OLIVE FRUIT. Acta Horticulturae, 2004, , 461-465.	0.2	26
68	Monopotassium Phosphate for Olive Fruit Abscission. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1313-1314.	1.0	10
69	The Effect of Water Deficit during Early Fruit Development on Olive Fruit Morphogenesis. Journal of the American Society for Horticultural Science, 2004, 129, 121-127.	1.0	80
70	<i>Growth and development of fruits of olive †Frantoio' under irrigated and rainfed conditions</i> . Journal of Horticultural Science and Biotechnology, 2003, 78, 119-124.	1.9	42
71	<i>In vitro</i> development and germination of immature olive embryos. Journal of Horticultural Science and Biotechnology, 2003, 78, 728-733.	1.9	2
72	Incidence and Population Density of Plant-Parasitic Nematodes Associated with Olive Planting Stocks at Nurseries in Southern Spain. Plant Disease, 2002, 86, 1075-1079.	1.4	56

Hava F Rapoport

#	Article	IF	CITATIONS
73	PARASITIC NEMATODES ASSOCIATED WITH OLIVE IN COUNTRIES BORDERING THE MEDITERRANEAN SEA. Acta Horticulturae, 2002, , 857-860.	0.2	2
74	MONPOTASIUM PHOSPHATE (PO4H2K) FOR OLIVE FRUIT ABSCISSION. Acta Horticulturae, 2002, , 263-266.	0.2	6
75	Early growth and development of the olive fruit mesocarp. Journal of Horticultural Science and Biotechnology, 2001, 76, 408-412.	1.9	28
76	Boraginaceae as Potential Sources of Gamma-Linolenic Acid. , 2001, , 189-197.		1
77	Pear fruit growth under regulated deficit irrigation in container-grown trees. Scientia Horticulturae, 2000, 85, 243-259.	3.6	50
78	EFFECT OF THE BEARING CONDITION OF THE TREE AND DEFOLIATION ON THE DORMANCY ONSET AND RELEASE OF OLIVE BUDS. Acta Horticulturae, 2000, , 297-304.	0.2	4
79	Olive Floral Bud Growth and Starch Content During Winter Rest and Spring Budbreak. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1223-1227.	1.0	37
80	The floral biology of the olive. Scientia Horticulturae, 1999, 82, 181-192.	3.6	35
81	Feasibility and anatomical development of an in vitro olive cleft-graft. Journal of Horticultural Science and Biotechnology, 1999, 74, 584-587.	1.9	9
82	MESOCARP CELL DIVISION AND EXPANSION IN THE GROWTH OF OLIVE FRUITS. Acta Horticulturae, 1999, , 301-304.	0.2	15
83	OLIVE EMBRYO DEVELOPMENT STAGE AND THE POSSIBILITY OF OBTAINING VIABLE SEEDLINGS. Acta Horticulturae, 1999, , 75-78.	0.2	2
84	The floral biology of the olive: effect of flower number, type and distribution on fruitset. Scientia Horticulturae, 1996, 66, 149-158.	3.6	61
85	Crop load effects on floral quality in olive. Scientia Horticulturae, 1994, 59, 123-130.	3.6	42
86	Initial fruit set at high temperature in olive, <i>Olea europaea</i> L The Journal of Horticultural Science, 1994, 69, 665-672.	0.3	37
87	Present status of verticillium wilt of olive in AndalucÃa (southern Spain). EPPO Bulletin, 1993, 23, 513-516.	0.8	59
88	Fruit Set and Enlargement in Fertilized and Unfertilized Olive Ovaries. Hortscience: A Publication of the American Society for Hortcultural Science, 1991, 26, 896-898.	1.0	16