Lee Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865880/publications.pdf

Version: 2024-02-01

23841 25423 15,297 118 59 115 citations h-index g-index papers 119 119 119 5053 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The Rate, Amplitude, and Duration of Outbursts from Class O Protostars in Orion. Astrophysical Journal Letters, 2022, 924, L23.	3.0	21
2	The ODYSSEUS Survey. Motivation and First Results: Accretion, Ejection, and Disk Irradiation of CVSO 109. Astronomical Journal, 2022, 163, 114.	1.9	15
3	Anisotropic Infall and Substructure Formation in Embedded Disks. Astrophysical Journal, 2022, 928, 92.	1.6	29
4	A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science, 2020, 369, 1233-1238.	6.0	63
5	Irregular Dust Features around Intermediate-mass Young Stars with GPI: Signs of Youth or Misaligned Disks?. Astrophysical Journal, 2020, 888, 7.	1.6	21
6	The interpretation of protoplanetary disc wind diagnostic lines from X-ray photoevaporation and analytical MHD models. Monthly Notices of the Royal Astronomical Society, 2020, 496, 223-244.	1.6	32
7	A Study of Millimeter Variability in FUor Objects. Astrophysical Journal, 2020, 897, 54.	1.6	4
8	Angular Momenta, Magnetization, and Accretion of Protostellar Cores. Astrophysical Journal, 2020, 893, 73.	1.6	19
9	On the Nature of the Compact Sources in IRAS 16293–2422 Seen at Centimeter to Submillimeter Wavelengths. Astrophysical Journal, 2019, 875, 94.	1.6	17
10	The CIDA Variability Survey of Orion OB1. II. Demographics of the Young, Low-mass Stellar Populations [*] . Astronomical Journal, 2019, 157, 85.	1.9	50
11	Disc wind models for FU Ori objects. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1663-1673.	1.6	12
12	Multiple Spiral Arms in the Disk around Intermediate-mass Binary HD 34700A. Astrophysical Journal, 2019, 872, 122.	1.6	46
13	The Origins of Protostellar Core Angular Momenta. Astrophysical Journal, 2019, 876, 33.	1.6	22
14	Magnetic suppression of turbulence and the star formation activity of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4824-4836.	1.6	27
15	How do T Tauri stars accrete?. Monthly Notices of the Royal Astronomical Society, 2018, 474, 88-94.	1.6	34
16	VLBA Observations of Strong Anisotripic Radio Scattering Toward the Orion Nebula. Astronomical Journal, 2018, 155, 218.	1.9	1
17	The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the Taurus Star-forming Region. Astrophysical Journal, 2018, 859, 33.	1.6	80
18	The Gould's Belt Distances Survey (GOBELINS). V. Distances and Kinematics of the Perseus Molecular Cloud. Astrophysical Journal, 2018, 865, 73.	1.6	115

#	Article	IF	CITATIONS
19	Gaia-DR2 Confirms VLBA Parallaxes in Ophiuchus, Serpens, and Aquila. Astrophysical Journal Letters, 2018, 869, L33.	3.0	89
20	On estimating angular momenta of infalling protostellar cores from observations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5495-5503.	1.6	9
21	The Role of Gravity in Producing Power-law Mass Functions. Astrophysical Journal, 2018, 868, 50.	1.6	10
22	Kinematics and structure of star-forming regions: insights from cold collapse models. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2372-2377.	1.6	23
23	RADIO MEASUREMENTS OF THE STELLAR PROPER MOTIONS IN THE CORE OF THE ORION NEBULA CLUSTER. Astrophysical Journal, 2017, 834, 139.	1.6	35
24	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH (THE OPHIUCHUS COMPLEX. Astrophysical Journal, 2017, 834, 141.	OF 1.6	127
25	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS. Astrophysical Journal, 2017, 834, 142.	1.6	193
26	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). III. THE DISTANCE TO THE SERPENS/AQUILA MOLECULA COMPLEX. Astrophysical Journal, 2017, 834, 143.	^{NR} 1.6	101
27	Gravitational Focusing and the Star Cluster Initial Mass Function. Astrophysical Journal, 2017, 836, 190.	1.6	11
28	The Herschel Orion Protostar Survey: Luminosity and Envelope Evolution. Astrophysical Journal, 2017, 840, 69.	1.6	58
29	Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142. Astrophysical Journal, 2017, 838, 20.	1.6	66
30	Characterizing the Stellar Population of NGC 1980. Astronomical Journal, 2017, 154, 29.	1.9	10
31	Disk Evolution and the Fate of Water. Space Science Reviews, 2017, 212, 813-834.	3.7	7
32	Kinematics of the Optically Visible YSOs toward the Orion B Molecular Cloud. Astrophysical Journal, 2017, 844, 138.	1.6	8
33	On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks. Astrophysical Journal, 2017, 850, 201.	1.6	133
34	THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 126.	1.6	43
35	SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS. Astrophysical Journal, 2016, 829, 13.	1.6	26
36	Accretion onto Pre-Main-Sequence Stars. Annual Review of Astronomy and Astrophysics, 2016, 54, 135-180.	8.1	391

3

#	Article	IF	CITATIONS
37	SPECTROSCOPIC BINARIES IN THE ORION NEBULA CLUSTER AND NGC 2264. Astrophysical Journal, 2016, 821, 8.	1.6	31
38	PLANETARY SIGNATURES IN THE SAO 206462 (HD 135344B) DISK: A SPIRAL ARM PASSING THROUGH VORTEX?. Astrophysical Journal, 2016, 819, 134.	1.6	61
39	SIGNATURES OF STAR CLUSTER FORMATION BY COLD COLLAPSE. Astrophysical Journal, 2015, 815, 27.	1.6	32
40	The number fraction of discs around brown dwarfs in Orion OB1a and the 25 Orionis group. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3490-3502.	1.6	15
41	CHARACTERIZING THE YOUNGEST <i>HERSCHEL</i> POETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS. Astrophysical Journal, 2015, 798, 128.	1.6	35
42	KINEMATIC AND SPATIAL SUBSTRUCTURE IN NGC 2264. Astronomical Journal, 2015, 149, 119.	1.9	220
43	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. IV. THE TAURUS-AURIGA COMPLEX. Astrophysical Journal, 2015, 801, 91.	1.6	36
44	ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL. Astrophysical Journal, 2015, 805, 15.	1.6	39
45	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. II. THE SERPENS REGION. Astrophysical Journal, 2015, 805, 9.	1.6	23
46	THE GOULD'S BELT VERY LARGE ARRAY SURVEY. III. THE ORION REGION. Astrophysical Journal, 2014, 790, 49	. 1.6	31
47	The low-mass star and sub-stellar populations of the 25 Orionis group. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1793-1811.	1.6	24
48	ACCRETION OUTBURSTS IN SELF-GRAVITATING PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 795, 61.	1.6	83
49	A SPECTROSCOPIC CENSUS IN YOUNG STELLAR REGIONS: THE $\dagger f$ ORIONIS CLUSTER. Astrophysical Journal, 2014, 794, 36.	1.6	35
50	THE EVOLUTION OF ACCRETION IN YOUNG STELLAR OBJECTS: STRONG ACCRETORS AT 3-10 Myr. Astrophysical Journal, 2014, 790, 47.	1.6	34
51	THE GOULD's BELT VERY LARGE ARRAY SURVEY. I. THE OPHIUCHUS COMPLEX. Astrophysical Journal, 2013, 775, 63.	1.6	57
52	MODELING THE RESOLVED DISK AROUND THE CLASS 0 PROTOSTAR L1527. Astrophysical Journal, 2013, 771, 48.	1.6	77
53	A <i>HERSCHEL</i> AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS. Astrophysical Journal, 2013, 767, 36.	1.6	132
54	THE DEPENDENCE OF STAR FORMATION EFFICIENCY ON GAS SURFACE DENSITY. Astrophysical Journal, 2013, 773, 48.	1.6	41

#	Article	lF	Citations
55	EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE UPPER STELLAR INITIAL MASS FUNCTION IN ORION A. Astrophysical Journal, 2013, 764, 114.	1.6	44
56	VARIABLE ACCRETION OUTBURSTS IN PROTOSTELLAR EVOLUTION. Astrophysical Journal, 2013, 764, 141.	1.6	33
57	CHALLENGES IN FORMING PLANETS BY GRAVITATIONAL INSTABILITY: DISK IRRADIATION AND CLUMP MIGRATION, ACCRETION, AND TIDAL DESTRUCTION. Astrophysical Journal, 2012, 746, 110.	1.6	194
58	A â^1/40.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system. Nature, 2012, 492, 83-85.	13.7	210
59	On the structure of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2562-2571.	1.6	46
60	THE LOW-MASS STELLAR POPULATION IN L1641: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE STELLAR INITIAL MASS FUNCTION. Astrophysical Journal, 2012, 752, 59.	1.6	57
61	COMPLEX STRUCTURE IN CLASS 0 PROTOSTELLAR ENVELOPES. II. KINEMATIC STRUCTURE FROM SINGLE-DISH AND INTERFEROMETRIC MOLECULAR LINE MAPPING. Astrophysical Journal, 2011, 740, 45.	1.6	91
62	TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS?. Astrophysical Journal, 2011, 729, 47.	1.6	267
63	EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS. Astronomical Journal, 2011, 141, 127.	1.9	49
64	Morphological Complexity of Protostellar Envelopes. Proceedings of the International Astronomical Union, 2010, 6, 49-52.	0.0	0
65	LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. I. OUTBURSTS. Astrophysical Journal, 2010, 713, 1134-1142.	1.6	123
66	LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. II. LAYERED ACCRETION WITH INFALL. Astrophysical Journal, 2010, 713, 1143-1158.	1.6	145
67	COMPETITIVE ACCRETION IN A SHEET GEOMETRY AND THE STELLAR IMF. Astrophysical Journal, 2010, 721, 1531-1546.	1.6	11
68	COMPLEX STRUCTURE IN CLASS 0 PROTOSTELLAR ENVELOPES. Astrophysical Journal, 2010, 712, 1010-1028.	1.6	96
69	NONSTEADY ACCRETION IN PROTOSTARS. Astrophysical Journal, 2009, 694, 1045-1055.	1.6	213
70	TWO-DIMENSIONAL SIMULATIONS OF FU ORIONIS DISK OUTBURSTS. Astrophysical Journal, 2009, 701, 620-634.	1.6	131
71	FAR-ULTRAVIOLET H ₂ EMISSION FROM CIRCUMSTELLAR DISKS. Astrophysical Journal, 2009, 703, L137-L141.	1.6	63
72	THE DIFFERENTIAL ROTATION OF FU ORI. Astrophysical Journal, 2009, 694, L64-L68.	1.6	33

#	Article	IF	Citations
73	KINEMATICS OF THE ORION NEBULA CLUSTER: VELOCITY SUBSTRUCTURE AND SPECTROSCOPIC BINARIES. Astrophysical Journal, 2009, 697, 1103-1118.	1.6	125
74	A LARGE-SCALE OPTICAL-NEAR-INFRARED SURVEY FOR BROWN DWARFS AND VERY LOW MASS STARS IN THE ORION OB1 ASSOCIATION. Astronomical Journal, 2008, 136, 51-66.	1.9	8
75	A <i>Spitzer</i> View of Protoplanetary Disks in the γ Velorum Cluster. Astrophysical Journal, 2008, 686, 1195-1208.	1.6	207
76	Rapid Molecular Cloud and Star Formation: Mechanisms and Movies. Astrophysical Journal, 2008, 689, 290-301.	1.6	121
77	The Hot Inner Disk of FU Orionis. Astrophysical Journal, 2007, 669, 483-492.	1.6	121
78	On the Structure of the Orion A Cloud and the Formation of the Orion Nebula Cluster. Astrophysical Journal, 2007, 654, 988-997.	1.6	133
79	25 Orionis: A Kinematically Distinct 10 Myr Old Group in Orion OB1a. Astrophysical Journal, 2007, 661, 1119-1128.	1.6	89
80	<i>Hubble</i> and <i>Spitzer</i> Observations of an Edgeâ€on Circumstellar Disk around a Brown Dwarf. Astrophysical Journal, 2007, 666, 1219-1225.	1.6	58
81	Why Do T Tauri Disks Accrete?. Astrophysical Journal, 2006, 648, 484-490.	1.6	136
82	Effects of Dust Growth and Settling in T Tauri Disks. Astrophysical Journal, 2006, 638, 314-335.	1.6	324
83	SpitzerObservations of the Orion OB1 Association: Secondâ€Generation Dust Disks at 5–10 Myr. Astrophysical Journal, 2006, 652, 472-481.	1.6	67
84	Herbig Ae/Be Stars in nearby OB Associations. Astronomical Journal, 2005, 129, 856-871.	1.9	182
85	The CIDA Variability Survey of Orion OB1. I. The Low-Mass Population of Ori OB1a and 1b. Astronomical Journal, 2005, 129, 907-926.	1.9	117
86	Evolution and Fragmentation of Wide-Angle Wind Driven Molecular Outflows. Astrophysics and Space Science, 2005, 298, 317-322.	0.5	2
87	The Truncated Disk of CoKu Tau/4. Astrophysical Journal, 2005, 621, 461-472.	1.6	200
88	The Mass Accretion Rates of Intermediate-Mass T Tauri Stars. Astronomical Journal, 2004, 128, 1294-1318.	1.9	345
89	Spectral Analysis and Classification of Herbig Ae/Be Stars. Astronomical Journal, 2004, 127, 1682-1701.	1.9	244
90	Highâ€Resolution Nearâ€Infrared Spectroscopy of FU Orionis Objects. Astrophysical Journal, 2004, 609, 906-916.	1.6	48

#	Article	IF	Citations
91	Collapse and Fragmentation in Finite Sheets. Astrophysical Journal, 2004, 616, 288-300.	1.6	157
92	Unveiling the Inner Disk Structure of T Tauri Stars. Astrophysical Journal, 2003, 597, L149-L152.	1.6	196
93	The Spatial Distribution of Fluorescent H2Emission near T Tauri. Astrophysical Journal, 2003, 591, 275-282.	1.6	39
94	Accretion in Very Low Mass Young Objects. Symposium - International Astronomical Union, 2003, 211, 141-142.	0.1	0
95	The Brown Dwarf Deficit in Taurus: Evidence for a Non-Universal IMF. Symposium - International Astronomical Union, 2003, 211, 81-82.	0.1	2
96	Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk. Astrophysical Journal, 2002, 568, 1008-1016.	1.6	470
97	Flows, Fragmentation, and Star Formation. I. Lowâ€Mass Stars in Taurus. Astrophysical Journal, 2002, 578, 914-924.	1.6	176
98	The CIDA-QUEST Large-Scale Survey of Orion OB1: Evidence for Rapid Disk Dissipation in a Dispersed Stellar Population. Science, 2001, 291, 93-96.	6.0	121
99	Accretion Disks around Young Objects. III. Grain Growth. Astrophysical Journal, 2001, 553, 321-334.	1.6	453
100	Emissionâ€Line Diagnostics of T Tauri Magnetospheric Accretion. II. Improved Model Tests and Insights into Accretion Physics. Astrophysical Journal, 2001, 550, 944-961.	1.6	334
101	Physical conditions of protosolar matter. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2001, 359, 2049-2060.	1.6	4
102	Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood. Astrophysical Journal, 2001, 562, 852-868.	1.6	472
103	On Age Spreads in Star-forming Regions. Astronomical Journal, 2001, 121, 1030-1039.	1.9	176
104	Observational Constraints on Transport (and Mixing) in Pre-Main Sequence Disks., 2000, 92, 55-68.		18
105	The Structure and Emission of the Accretion Shock in T Tauri Stars. II. The Ultravioletâ€Continuum Emission. Astrophysical Journal, 2000, 544, 927-932.	1.6	178
106	Turbulent Flow–driven Molecular Cloud Formation: A Solution to the Post–T Tauri Problem?. Astrophysical Journal, 1999, 527, 285-297.	1.6	260
107	Accretion Disks around Young Objects. II. Tests of Wellâ€mixed Models with ISM Dust. Astrophysical Journal, 1999, 527, 893-909.	1.6	391
108	Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars. Astrophysical Journal, 1998, 492, 743-753.	1.6	234

#	Article	IF	CITATIONS
109	Accretion and the Evolution of T Tauri Disks. Astrophysical Journal, 1998, 495, 385-400.	1.6	1,228
110	A Search for Very Low Mass Pre–Main-Sequence Stars in Taurus. Astronomical Journal, 1998, 115, 2074-2091.	1.9	147
111	The Observational Evidence for Accretion. Symposium - International Astronomical Union, 1997, 182, 391-405.	0.1	2
112	THE FU ORIONIS PHENOMENON. Annual Review of Astronomy and Astrophysics, 1996, 34, 207-240.	8.1	646
113	Observational constraints on FU ORI winds. Astronomical Journal, 1995, 109, 1846.	1.9	61
114	Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud. Astrophysical Journal, Supplement Series, 1995, 101, 117.	3.0	1,462
115	New pre-main-sequence stars in the Taurus-Auriga molecular cloud. Astronomical Journal, 1994, 108, 251.	1.9	87
116	Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation. Astrophysical Journal, 1994, 426, 669.	1.6	380
117	Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis. Astrophysical Journal, 1993, 402, 623.	1.6	76
118	The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions. Astrophysical Journal, 1993, 414, 676.	1.6	186