
Simon Claridge Llb, Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noninvasive electrocardiographic assessment of ventricular activation and remodeling response to cardiac resynchronization therapy. Heart Rhythm O2, 2021, 2, 12-18.	1.7	6
2	The physiological effects of cardiac resynchronization therapy on aortic and pulmonary flow and dynamic and static components of systemic impedance. Heart Rhythm O2, 2021, 2, 365-373.	1.7	0
3	OUP accepted manuscript. Europace, 2021, , .	1.7	4
4	Evidence of reverse electrical remodelling by non-invasive electrocardiographic imaging to assess acute and chronic changes in bulk ventricular activation following cardiac resynchronisation therapy. Journal of Electrocardiology, 2020, 58, 96-102.	0.9	4
5	High mean entropy calculated from cardiac MRI texture analysis is associated with antitachycardia pacing failure. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 737-745.	1.2	3
6	Evaluation of [13N]ammonia positron emission tomography as a potential method for quantifying glutamine synthetase activity in the human brain. EJNMMI Research, 2020, 10, 146.	2.5	1
7	Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity. Heart Rhythm, 2019, 16, 1242-1250.	0.7	24
8	Comparison of Echocardiographic and Electrocardiographic Mapping for Cardiac Resynchronisation Therapy Optimisation. Cardiology Research and Practice, 2019, 2019, 1-9.	1.1	7
9	Left ventricular activation-recovery interval variability predicts spontaneous ventricular tachyarrhythmia in patients with heart failure. Heart Rhythm, 2019, 16, 702-709.	0.7	11
10	Electrical latency predicts the optimal left ventricular endocardial pacing site: results from a multicentre international registry. Europace, 2018, 20, 1989-1996.	1.7	6
11	Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. Journal of Electrocardiology, 2018, 51, 457-463.	0.9	28
12	Predictors and outcomes of patients requiring repeat transvenous lead extraction of pacemaker and defibrillator leads. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 155-160.	1.2	5
13	To the Editor— The cost of cardiac resynchronization therapy generator replacement?. Heart Rhythm, 2018, 15, e35-e36.	0.7	1
14	The interaction of QRS duration with cardiac magnetic resonance derived scar and mechanical dyssynchrony in systolic heart failure: Implications for cardiac resynchronization therapy. IJC Heart and Vasculature, 2018, 18, 81-85.	1.1	2
15	Guidance for Optimal Site Selection of a Leadless Left Ventricular Endocardial Electrode Improves Acute Hemodynamic Response and Chronic Remodeling. JACC: Clinical Electrophysiology, 2018, 4, 860-868.	3.2	19
16	A cost effectiveness study establishing the impact and accuracy of implementing the NICE guidelines lowering plasma NTproBNP threshold in patients with clinically suspected heart failure at our institution. International Journal of Cardiology, 2018, 257, 131-136.	1.7	1
17	Myocardial strain computed at multiple spatial scales from tagged magnetic resonance imaging: Estimating cardiac biomarkers for CRT patients. Medical Image Analysis, 2018, 43, 169-185.	11.6	7
18	Cost-effectiveness of a risk-stratified approach to cardiac resynchronisation therapy defibrillators (high versus low) at the time of generator change. Heart, 2018, 104, 416-422.	2.9	5

#	Article	IF	CITATIONS
19	Variation in activation time during bipolar vs extended bipolar left ventricular pacing. Journal of Cardiovascular Electrophysiology, 2018, 29, 1675-1681.	1.7	0
20	Is heart failure with mid range ejection fraction (HFmrEF) a distinct clinical entity or an overlap group?. IJC Heart and Vasculature, 2018, 21, 1-6.	1.1	18
21	Left Lateral Fluoroscopy and Xiphisternum Removal to Avoid Bowel Perforation and Enable Epicardial Ventricular Tachycardia Ablation. JACC: Clinical Electrophysiology, 2018, 4, 844-845.	3.2	Ο
22	Optimal site selection and image fusion guidance technology to facilitate cardiac resynchronization therapy. Expert Review of Medical Devices, 2018, 15, 555-570.	2.8	13
23	Beat-to-Beat Variability of Ventricular Action Potential Duration Oscillates at Low Frequency During Sympathetic Provocation in Humans. Frontiers in Physiology, 2018, 9, 147.	2.8	22
24	Changes in contractility determine coronary haemodynamics in dyssynchronous left ventricular heart failure, not vice versa. IJC Heart and Vasculature, 2018, 19, 8-13.	1.1	6
25	Cost-Effectiveness Analysis of QuadripolarÂVersus Bipolar Left Ventricular Leads for Cardiac Resynchronization Defibrillator TherapyÂinÂa Large, Multicenter UKÂRegistry. JACC: Clinical Electrophysiology, 2017, 3, 107-116.	3.2	28
26	Usefulness of Cardiac Magnetic Resonance Imaging to Measure Left Ventricular Wall Thickness for Determining Risk Scores for Sudden Cardiac Death in Patients With HypertrophicÂCardiomyopathy. American Journal of Cardiology, 2017, 119, 1450-1455.	1.6	14
27	Substrateâ€dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: The importance of T1 mapping in nonischemic patients. Journal of Cardiovascular Electrophysiology, 2017, 28, 785-795.	1.7	17
28	Comprehensive use of cardiac computed tomography to guide left ventricular lead placement in cardiac resynchronization therapy. Heart Rhythm, 2017, 14, 1364-1372.	0.7	48
29	Real-Time X-MRI-Guided Left Ventricular Lead Implantation for Targeted Delivery ofÂCardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2017, 3, 803-814.	3.2	37
30	Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2017, 28, 208-215.	1.7	25
31	Updates in Cardiac Resynchronization Therapy for Chronic Heart Failure: Review of Multisite Pacing. Current Heart Failure Reports, 2017, 14, 376-383.	3.3	15
32	The role of multi modality imaging in selecting patients and guiding lead placement for the delivery of cardiac resynchronization therapy. Expert Review of Cardiovascular Therapy, 2017, 15, 93-107.	1.5	13
33	Focal But Not Diffuse Myocardial Fibrosis Burden Quantification Using Cardiac Magnetic Resonance Imaging Predicts Left Ventricular Reverse Modeling Following Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2016, 27, 203-209.	1.7	39
34	Multisite Pacing for Cardiac Resynchronization Therapy: Promise and Pitfalls. Current Cardiology Reports, 2016, 18, 64.	2.9	8
35	Coupling of ventricular action potential duration and local strain patterns during reverse remodeling in responders and nonresponders to cardiac resynchronization therapy. Heart Rhythm, 2016, 13, 1898-1904.	0.7	6
36	Improvement of Right Ventricular Hemodynamics with Left Ventricular Endocardial Pacing during Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2016, 39, 531-541.	1.2	11

#	Article	IF	CITATIONS
37	Optimized Left Ventricular Endocardial StimulationÂls Superior to Optimized EpicardialÂStimulation in Ischemic Patients WithÂPoor Response to Cardiac ResynchronizationÂTherapy. JACC: Clinical Electrophysiology, 2016, 2, 799-809.	3.2	48
38	Effects of Epicardial and Endocardial Cardiac Resynchronization Therapy on Coronary Flow: Insights From Wave Intensity Analysis. Journal of the American Heart Association, 2015, 4, .	3.7	9
39	Comparison of delayed transvenous reimplantation and immediate surgical epicardial approach in pacing-dependent patients undergoing extraction of infected permanent pacemakers. Heart Rhythm, 2015, 12, 1209-1215.	0.7	29
40	Multimodality Imaging of Extensive Caseating Intramyocardial Calcification Secondary to Lymphoma. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	1
41	Beneficial Effect on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated by Early Access to High Conduction Velocity Tissue. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1164-1172.	4.8	47
42	Mechanistic insights into the benefits of multisite pacing in cardiac resynchronization therapy: The importance of electrical substrate and rate of left ventricular activation. Heart Rhythm, 2015, 12, 2449-2457.	0.7	43
43	Narrow QRS systolic heart failure: is there a target for cardiac resynchronization?. Expert Review of Cardiovascular Therapy, 2015, 13, 783-797.	1.5	5
44	Limitations of chronic delivery of multi-vein left ventricular stimulation for cardiac resynchronization therapy. Journal of Interventional Cardiac Electrophysiology, 2015, 42, 135-142.	1.3	18
45	Current concepts relating coronary flow, myocardial perfusion and metabolism in left bundle branch block and cardiac resynchronisation therapy. International Journal of Cardiology, 2015, 181, 65-72.	1.7	14
46	A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm, 2014, 11, 1790-1797.	0.7	35
47	Plasmapheresis as rescue therapy for systemic lupus erthyematosus-associated diffuse alveolar haemorrhage. BMJ Case Reports, 2011, 2011, bcr0220113893-bcr0220113893.	0.5	17