Juan Antonio Zapien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865618/publications.pdf

Version: 2024-02-01

145 9,376 50 93
papers citations h-index g-index

147 147 147 14659

147 147 14659
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhanced photocatalytic and antifungal activity of ZnO–Cu2+and Ag@ZnO–Cu2+ materials. Ceramics International, 2022, 48, 12660-12674.	2.3	5
2	Record-high near-band-edge optical nonlinearities and two-level model correction of poled polymers by spectroscopic electromodulation and ellipsometry. Science China Chemistry, 2022, 65, 584-593.	4.2	3
3	Ultralow Thermal Conductivity in Dualâ€Doped nâ€Type Bi ₂ Te ₃ Material for Enhanced Thermoelectric Properties. Advanced Electronic Materials, 2021, 7, 2000910.	2.6	11
4	Graphene Oxide–Reduced Graphene Oxide Janus Membrane for Efficient Solar Generation of Water Vapor. ACS Applied Nano Materials, 2021, 4, 1916-1923.	2.4	20
5	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	7.8	16
6	Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Materials Today Energy, 2021, 20, 100659.	2.5	31
7	Enhanced Light Emission Performance of Mixed Cation Perovskite Films—The Effect of Solution Stoichiometry on Crystallization. Advanced Optical Materials, 2021, 9, 2100393.	3.6	6
8	Improved Nanophotonic Front Contact Design for Highâ€Performance Perovskite Singleâ€Junction and Perovskite/Perovskite Tandem Solar Cells. Solar Rrl, 2021, 5, 2100509.	3.1	23
9	Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy, 2021, 89, 106388.	8.2	25
10	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	6.6	22
11	Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Investigation, 2020, 38, 61-84.	0.6	5
12	A Family of Small Molecular Materials Enabling Consistently Lower Recombination Losses in Organic Photovoltaic Devices. Solar Rrl, 2020, 4, 2000245.	3.1	4
13	Development of a sustainable photocatalytic process for air purification Chemosphere, 2020, 257, 127236.	4.2	29
14	Excitation of Bloch Surface Waves in Zero-Admittance Multilayers for High-Sensitivity Sensor Applications. Physical Review Applied, 2020, 13, .	1.5	22
15	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€lon Batteries. Advanced Materials, 2020, 32, e19081	211.1	381
16	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
17	Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials. Ceramics International, 2020, 46, 8979-8994.	2.3	11
18	All-Dielectric Interference Coating for Sensing Applications. , 2020, , .		0

#	Article	IF	CITATIONS
19	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€Species Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	10.2	341
20	Ruddlesden–Popper Perovskites: Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites (Advanced Optical Materials 19/2019). Advanced Optical Materials, 2019, 7, 1970074.	3.6	0
21	A generalized Stark effect electromodulation model for extracting excitonic properties in organic semiconductors. Nature Communications, 2019, 10, 5089.	5.8	15
22	Stoichiometry Controlled Bipolar Conductivity in Nanocrystalline <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ni</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi> mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>-Physical Review Applied, 2019, 11, .</mml:mo></mml:mrow></mml:msub></mml:math>	> C tl 5 /mm + < /mml:m	l:m 19 <mml:m o><mml:mi></mml:mi></mml:m
23	Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites. Advanced Optical Materials, 2019, 7, 1900269.	3.6	3
24	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	2.4	40
25	Superâ€Stretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	10.2	287
26	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	5.2	254
27	One-pot synthesis of color-tunable copper doped zinc sulfide quantum dots for solid-state lighting devices. Journal of Alloys and Compounds, 2019, 787, 537-542.	2.8	16
28	Sodiumâ€ion Hybrid Battery Combining an Anionâ€intercalation Cathode with an Adsorptionâ€Type Anode for Enhanced Rate and Cycling Performance. Batteries and Supercaps, 2019, 2, 440-447.	2.4	46
29	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	2.8	65
30	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano, 2018, 12, 1949-1958.	7.3	336
31	Energy density engineering via zero-admittance domains in all-dielectric stratified materials. Physical Review A, 2018, 97, .	1.0	18
32	Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO–Ga ₂ O ₃ Alloys with Widely Tunable Electronic Bands. ACS Applied Materials & Ditempted Amorphous (10, 7239-7247).	4.0	24
33	Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Analytical and Bioanalytical Chemistry, 2018, 410, 2629-2636.	1.9	24
34	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	2.8	73
35	Characterization of Low-Frequency Excess Noise in CH ₃ NH ₃ Pbl ₃ -Based Solar Cells Grown by Solution and Hybrid Chemical Vapor Deposition Techniques. ACS Applied Materials & Samp; Interfaces, 2018, 10, 371-380.	4.0	22
36	Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Mikrochimica Acta, 2018, 185, 507.	2.5	21

#	Article	IF	CITATIONS
37	Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe. Mikrochimica Acta, $2018, 185, 511$.	2.5	17
38	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	5.2	110
39	Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide. ACS Nano, 2018, 12, 8597-8605.	7.3	257
40	Hierarchical self-assembled Bi ₂ S ₃ hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale, 2018, 10, 13343-13350.	2.8	67
41	Effect of Temperature, Time, Concentration, Annealing, and Substrates on ZnO Nanorod Arrays Growth by Hydrothermal Process on Hot Plate. Crystallography Reports, 2018, 63, 456-471.	0.1	13
42	Initiating a mild aqueous electrolyte Co ₃ O ₄ /Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530.	15.6	414
43	Convergence and precision characteristics of finite difference time domain method for the analysis of spectroscopic ellipsometry data at oblique incidence. Applied Surface Science, 2017, 421, 878-883.	3.1	4
44	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Diterfaces, 2017, 9, 5699-5708.	4.0	129
45	Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices. Advanced Materials, 2017, 29, 1606909.	11.1	32
46	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	5.2	64
47	A comparative study on the electronic and optical properties of Sb2Se3 thin film. Semiconductors, 2017, 51, 1615-1624.	0.2	25
48	Evaluation of the dielectric function of colloidal Cd1â^xHgxTe quantum dot films by spectroscopic ellipsometry. Applied Surface Science, 2017, 421, 295-300.	3.1	6
49	Magnetism as a tool for band-gap narrowing of zinc oxide films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 77, 240-243.	1.1	5
50	Enhanced electrochemical performance of ZnO nanorod core/polypyrrole shell arrays by graphene oxide. Electrochimica Acta, 2016, 187, 517-524.	2.6	38
51	Effect of PTB7 Properties on the Performance of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Description of PTB7:PC ₇₁ BM Solar Cells. ACS Applied	4.0	32
52	Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon, 2015, 86, 310-317.	5.4	61
53	Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7, 17299-17305.	2.8	160
54	Green and facile synthesis of Fe ₃ O ₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16206-16212.	5.2	50

#	Article	IF	CITATIONS
55	Facile Synthesis of Hollow Mesoporous CoFe ₂ O ₄ Nanospheres and Graphene Composites as Highâ€Performance Anode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2015, 2, 1010-1018.	1.7	45
56	Ferromagnetism in Ti-doped ZnO thin films. Journal of Applied Physics, 2015, 117, .	1.1	20
57	Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2015, 176, 1332-1337.	2.6	61
58	Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. Journal of Power Sources, 2015, 275, 769-776.	4.0	81
59	Electronic structure and optical properties of CdSxSe1â^'x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations. Journal of Applied Physics, 2014, 116, .	1.1	15
60	The influence of TiO $_{2}$ nanostructure properties on the performance of TiO $_{2}$ -based anodes in lithium ion battery applications. Turkish Journal of Physics, 2014, 38, 442-449.	0.5	5
61	Light trapping considerations in self-assembled ZnO nanorod arrays for quantum dot sensitized solar cells. Proceedings of SPIE, 2014, , .	0.8	0
62	Theoretical and experimental study of the response of CuO gas sensor under ozone. Sensors and Actuators B: Chemical, 2014, 190, 8-15.	4.0	52
63	Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 261, 184-187.	4.0	52
64	Chemical states and ferromagnetism in heavily Mn-substituted zinc oxide thin films. Journal of Applied Physics, 2014, 115, .	1.1	12
65	Surface Engineering of ZnO Nanostructures for Semiconductorâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 5337-5367.	11.1	149
66	Enhanced Performance of PTB7:PC ₇₁ BM Solar Cells via Different Morphologies of Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20676-20684.	4.0	61
67	Facile hydrothermal synthesis of CuFeO ₂ hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries. Chemical Communications, 2014, 50, 10151-10154.	2.2	58
68	One-pot scalable synthesis of Cu–CuFe ₂ O ₄ /graphene composites as anode materials for lithium-ion batteries with enhanced lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 13892.	5.2	56
69	Solar Cells: Surface Engineering of ZnO Nanostructures for Semiconductorâ€Sensitized Solar Cells (Adv. Mater. 31/2014). Advanced Materials, 2014, 26, 5575-5575.	11.1	2
70	On the modeling of ellipsometry data at large angles of incidence using finite-difference time-domain. Thin Solid Films, 2014, 571, 669-674.	0.8	2
71	On the development of Finite-Difference Time-Domain for modeling the spectroscopic ellipsometry response of 1D periodic structures. Thin Solid Films, 2014, 571, 356-363.	0.8	8
72	Solution-processable graphene oxide as an insulator layer for metal–insulator–semiconductor silicon solar cells. RSC Advances, 2013, 3, 17918.	1.7	13

#	Article	IF	CITATIONS
73	Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries. Journal of Solid State Chemistry, 2013, 201, 330-337.	1.4	43
74	Influence of annealing temperature on the structural and optical properties of highly-oriented Al and Er co-doped ZnO films. Journal of Materials Science: Materials in Electronics, 2013, 24, 3868-3874.	1.1	3
75	Vertically aligned ZnO nanorods/CdS nanowires branched heterostructures: Cathodoluminescence properties and photovoltaic application. Journal of Crystal Growth, 2013, 374, 65-70.	0.7	5
76	Fabrication of CuInS ₂ -Sensitized Solar Cells via an Improved SILAR Process and Its Interface Electron Recombination. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10605-10613.	4.0	32
77	Hole-induced large-area homoepitaxial growth of CdSe nanowire arrays for photovoltaic application. Journal of Materials Chemistry A, 2013, 1, 6313.	5.2	6
78	Infrared organic photovoltaic device based on charge transfer interaction between organic materials. Organic Electronics, 2013, 14, 291-294.	1.4	14
79	Towards FDTD modeling of spectroscopic ellipsometry data at large angles of incidence. Applied Surface Science, 2013, 281, 2-7.	3.1	9
80	Transmission optimization of multilayer OLED encapsulation based on spectroscopic ellipsometry. Thin Solid Films, 2013, 549, 22-29.	0.8	4
81	Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Applied Physics Letters, 2013, 102, .	1.5	91
82	Thermal evaporation-induced anhydrous synthesis of Fe3O4–graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 7174.	1.3	58
83	Annealing of P3HT:PCBM Blend Filmâ€"The Effect on Its Optical Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4247-4259.	4.0	33
84	Evaporation-induced synthesis of carbon-supported Fe3O4 nanocomposites as anode material for lithium-ion batteries. CrystEngComm, 2013, 15, 1324.	1.3	38
85	ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis. Applied Physics Letters, 2012, 101, .	1.5	20
86	Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 22692.	6.7	30
87	Construction and Evaluation of High-Quality n-ZnO Nanorod/p-Diamond Heterojunctions. Journal of Nanoscience and Nanotechnology, 2012, 12, 4560-4563.	0.9	7
88	Facile and Rapid Synthesis of Highly Porous Wirelike TiO ₂ as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1608-1613.	4.0	57
89	Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells. Applied Physics Letters, 2012, 100, .	1.5	43
90	Visible–NIR photodetectors based on CdTe nanoribbons. Nanoscale, 2012, 4, 2914.	2.8	99

#	Article	IF	CITATIONS
91	Metalâ€Free and Metallated Polymers: Properties and Photovoltaic Performance. Macromolecular Chemistry and Physics, 2012, 213, 1300-1310.	1.1	12
92	Near-Ultraviolet Light-Emitting Devices Using Vertical ZnO Nanorod Arrays. Journal of Electronic Materials, 2012, 41, 853-856.	1.0	10
93	Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films. Electrochemistry Communications, 2012, 20, 178-181.	2.3	18
94	Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. Journal of Solid State Chemistry, 2012, 190, 104-110.	1.4	46
95	Composition tuning of room-temperature nanolasers. Vacuum, 2012, 86, 737-741.	1.6	13
96	Materials with extreme properties: Their structuring and applications. Vacuum, 2012, 86, 575-585.	1.6	20
97	Exploiting nanostructure-thin film interfaces in advanced sensor device configurations. Vacuum, 2012, 86, 757-760.	1.6	10
98	Controllable Fabrication of Three-Dimensional Radial ZnO Nanowire/Silicon Microrod Hybrid Architectures. Crystal Growth and Design, 2011, 11, 147-153.	1.4	52
99	Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology, 2011, 22, 245202.	1.3	43
100	Rapid Microwave Synthesis of Porous TiO ₂ Spheres and Their Applications in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10419-10425.	1.5	111
101	Surface-Enhanced Emission from Single Semiconductor Nanoribbons. Nano Letters, 2011, 11, 4626-4630.	4.5	8
102	Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications. Nanoscale Research Letters, 2011, 6, 340.	3.1	61
103	Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. Journal of Power Sources, 2011, 196, 6394-6399.	4.0	75
104	Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today, 2011, 6, 122-130.	6.2	257
105	Electronic structure at the interfaces of vertically aligned zinc oxide nanowires and sensitizing layers in photochemical solar cells. Journal Physics D: Applied Physics, 2011, 44, 325108.	1.3	12
106	Enhanced Raman scattering from vertical silicon nanowires array. Applied Physics Letters, 2011, 98, 183108.	1.5	21
107	Synthesis of Homogeneously Alloyed Cu _{2â^'<i>x</i>} (S _{<i>y</i>} Se _{1â^'<i>y</i>}) Nanowire Bundles with Tunable Compositions and Bandgaps. Advanced Functional Materials, 2010, 20, 4190-4195.	7.8	55
108	Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition. Thin Solid Films, 2010, 518, 5372-5377.	0.8	30

#	Article	IF	Citations
109	Integrated Nanorods and Heterostructure Field Effect Transistors for Gas Sensing. Journal of Physical Chemistry C, 2010, 114, 7999-8004.	1.5	16
110	Low-Temperature Synthesis of CulnSe ₂ Nanotube Array on Conducting Glass Substrates for Solar Cell Application. ACS Nano, 2010, 4, 6064-6070.	7.3	86
111	A High-Efficiency Surface-Enhanced Raman Scattering Substrate Based on Silicon Nanowires Array Decorated with Silver Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 1969-1975.	1.5	123
112	ZnO/Au Composite Nanoarrays As Substrates for Surface-Enhanced Raman Scattering Detection. Journal of Physical Chemistry C, 2010, 114, 93-100.	1.5	190
113	Accurate Determination of the Index of Refraction of Polymer Blend Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2010, 114, 15094-15101.	1.5	33
114	Studying cubic boron nitride by Raman and infrared spectroscopies. Diamond and Related Materials, 2010, 19, 968-971.	1.8	26
115	Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Applied Physics Letters, 2010, 96, .	1.5	97
116	Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties. Journal of Materials Chemistry, 2010, 20, 3006.	6.7	40
117	p -type conduction in beryllium-implanted hexagonal boron nitride films. Applied Physics Letters, 2009, 95, .	1.5	35
118	A cubic boron nitride film-based fluorescent sensor for detecting Hg2+. Applied Physics Letters, 2009, 94, .	1.5	16
119	Nitrogen-doped silicon nanowires: Synthesis and their blue cathodoluminescence and photoluminescence. Applied Physics Letters, 2009, 95, .	1.5	20
120	Polyhedral Organic Microcrystals: From Cubes to Rhombic Dodecahedra. Angewandte Chemie - International Edition, 2009, 48, 9121-9123.	7.2	97
121	Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells. Journal of Physical Chemistry C, 2009, 113, 13433-13437.	1.5	174
122	Synthesis of CdSXSe1â^'X Nanoribbons with Uniform and Controllable Compositions via Sulfurization: Optical and Electronic Properties Studies. Journal of Physical Chemistry C, 2009, 113, 17183-17188.	1.5	27
123	Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations. Crystal Growth and Design, 2009, 9, 3222-3227.	1.4	116
124	High-quality single-crystal CdSe nanoribbons and their optical properties. Optoelectronics Letters, 2008, 4, 161-164.	0.4	5
125	Luminescent Properties of ZnO Nanorod Arrays Grown on Al:ZnO Buffer Layer. Journal of Physical Chemistry C, 2008, 112, 820-824.	1.5	22
126	p-Type ZnO Nanowire Arrays. Nano Letters, 2008, 8, 2591-2597.	4.5	237

#	Article	IF	Citations
127	Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons. Applied Physics Letters, 2007, 90, 213114.	1.5	49
128	Wavelength-tunable lasing in single-crystal CdS1â^'XSeX nanoribbons. Nanotechnology, 2007, 18, 365606.	1.3	45
129	A Polyoxometalate-Assisted Electrochemical Method for Silicon Nanostructures Preparation:Â From Quantum Dots to Nanowires. Journal of the American Chemical Society, 2007, 129, 5326-5327.	6.6	163
130	Photoluminescence and photoconductivity properties of copper-doped Cd1â^xZnxS nanoribbons. Nanotechnology, 2006, 17, 5935-5940.	1.3	45
131	Catalyst-Assisted Formation of Nanocantilever Arrays on ZnS Nanoribbons by Post-Annealing Treatment. Journal of Physical Chemistry B, 2006, 110, 6759-6762.	1.2	24
132	Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays. Advanced Materials, 2006, 18, 1527-1532.	11.1	140
133	Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition. Nanotechnology, 2006, 17, 2913-2917.	1.3	24
134	Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons. Advanced Materials, 2005, 17, 1372-1377.	11.1	203
135	Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Applied Physics Letters, 2004, 85, 2361-2363.	1.5	150
136	High-quality CdS nanoribbons with lasing cavity. Applied Physics Letters, 2004, 85, 3241-3243.	1. 5	109
137	Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials, 2004, 14, 589-594.	7.8	272
138	Room-temperature single nanoribbon lasers. Applied Physics Letters, 2004, 84, 1189-1191.	1.5	147
139	High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays. Advanced Materials, 2003, 15, 838-841.	11.1	598
140	Raman Spectrum of silicon nanowires. Materials Science and Engineering C, 2003, 23, 931-934.	3.8	60
141	Characterization of Wide Bandgap Thin Film Growth Using UV-Extended Real Time Spectroscopic Ellipsometry: Applications to Cubic Boron Nitride. Journal of Wide Bandgap Materials, 2002, 9, 191-206.	0.1	0
142	Multichannel ellipsometry from 1.5 to 6.5 eV for real time characterization of wide band gap materials: phase identification in boron nitride thin films. Diamond and Related Materials, 2001, 10, 1304-1310.	1.8	11
143	Ultraviolet-extended real-time spectroscopic ellipsometry for characterization of phase evolution in BN thin films. Applied Physics Letters, 2001, 78, 1982-1984.	1.5	22
144	Real-time spectroscopic ellipsometry from 1.5 to 6.5 eV. Thin Solid Films, 2000, 364, 16-21.	0.8	10

#	Article	lF	CITATIONS
145	Aluminium nitride films prepared by reactive magnetron sputtering. Journal Physics D: Applied Physics, 1997, 30, 2147-2155.	1.3	21