
Juan Antonio Zapien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays. Advanced Materials, 2003, 15, 838-841.	21.0	598
2	Initiating a mild aqueous electrolyte Co ₃ O ₄ /Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530.	30.8	414
3	Hydrogenâ€Free and Dendriteâ€Free Allâ€Solidâ€State Znâ€Ion Batteries. Advanced Materials, 2020, 32, e19081	221.0	381
4	Achieving Highâ€Voltage and Highâ€Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Twoâ€Species Redox Reaction. Advanced Energy Materials, 2019, 9, 1902446.	19.5	341
5	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc–Air Battery. ACS Nano, 2018, 12, 1949-1958.	14.6	336
6	Superâ€Stretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	19.5	287
7	Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials, 2004, 14, 589-594.	14.9	272
8	Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today, 2011, 6, 122-130.	11.9	257
9	Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide. ACS Nano, 2018, 12, 8597-8605.	14.6	257
10	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	10.3	254
11	p-Type ZnO Nanowire Arrays. Nano Letters, 2008, 8, 2591-2597.	9.1	237
12	Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons. Advanced Materials, 2005, 17, 1372-1377.	21.0	203
13	ZnO/Au Composite Nanoarrays As Substrates for Surface-Enhanced Raman Scattering Detection. Journal of Physical Chemistry C, 2010, 114, 93-100.	3.1	190
14	Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells. Journal of Physical Chemistry C, 2009, 113, 13433-13437.	3.1	174
15	A Polyoxometalate-Assisted Electrochemical Method for Silicon Nanostructures Preparation:Â From Quantum Dots to Nanowires. Journal of the American Chemical Society, 2007, 129, 5326-5327.	13.7	163
16	Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7, 17299-17305.	5.6	160
17	Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Applied Physics Letters, 2004, 85, 2361-2363.	3.3	150
18	Surface Engineering of ZnO Nanostructures for Semiconductor‣ensitized Solar Cells. Advanced Materials, 2014, 26, 5337-5367.	21.0	149

#	Article	IF	CITATIONS
19	Room-temperature single nanoribbon lasers. Applied Physics Letters, 2004, 84, 1189-1191.	3.3	147
20	Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays. Advanced Materials, 2006, 18, 1527-1532.	21.0	140
21	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 5699-5708.	8.0	129
22	A High-Efficiency Surface-Enhanced Raman Scattering Substrate Based on Silicon Nanowires Array Decorated with Silver Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 1969-1975.	3.1	123
23	Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations. Crystal Growth and Design, 2009, 9, 3222-3227.	3.0	116
24	Rapid Microwave Synthesis of Porous TiO ₂ Spheres and Their Applications in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10419-10425.	3.1	111
25	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	10.3	110
26	High-quality CdS nanoribbons with lasing cavity. Applied Physics Letters, 2004, 85, 3241-3243.	3.3	109
27	Visible–NIR photodetectors based on CdTe nanoribbons. Nanoscale, 2012, 4, 2914.	5.6	99
28	Polyhedral Organic Microcrystals: From Cubes to Rhombic Dodecahedra. Angewandte Chemie - International Edition, 2009, 48, 9121-9123.	13.8	97
29	Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Applied Physics Letters, 2010, 96, .	3.3	97
30	Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Applied Physics Letters, 2013, 102, .	3.3	91
31	Low-Temperature Synthesis of CulnSe ₂ Nanotube Array on Conducting Glass Substrates for Solar Cell Application. ACS Nano, 2010, 4, 6064-6070.	14.6	86
32	Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. Journal of Power Sources, 2015, 275, 769-776.	7.8	81
33	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	14.9	81
34	Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. Journal of Power Sources, 2011, 196, 6394-6399.	7.8	75
35	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	5.6	73
36	Hierarchical self-assembled Bi ₂ S ₃ hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale, 2018, 10, 13343-13350.	5.6	67

#	Article	IF	CITATIONS
37	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	5.6	65
38	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	10.3	64
39	Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications. Nanoscale Research Letters, 2011, 6, 340.	5.7	61
40	Enhanced Performance of PTB7:PC ₇₁ BM Solar Cells via Different Morphologies of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 20676-20684.	8.0	61
41	Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon, 2015, 86, 310-317.	10.3	61
42	Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2015, 176, 1332-1337.	5.2	61
43	Raman Spectrum of silicon nanowires. Materials Science and Engineering C, 2003, 23, 931-934.	7.3	60
44	Thermal evaporation-induced anhydrous synthesis of Fe3O4–graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 7174.	2.8	58
45	Facile hydrothermal synthesis of CuFeO ₂ hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries. Chemical Communications, 2014, 50, 10151-10154.	4.1	58
46	Facile and Rapid Synthesis of Highly Porous Wirelike TiO ₂ as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1608-1613.	8.0	57
47	One-pot scalable synthesis of Cu–CuFe ₂ O ₄ /graphene composites as anode materials for lithium-ion batteries with enhanced lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 13892.	10.3	56
48	Synthesis of Homogeneously Alloyed Cu _{2â^'<i>x</i>} (S _{<i>y</i>} Se _{1â^'<i>y</i>}) Nanowire Bundles with Tunable Compositions and Bandgaps. Advanced Functional Materials, 2010, 20, 4190-4195.	14.9	55
49	Controllable Fabrication of Three-Dimensional Radial ZnO Nanowire/Silicon Microrod Hybrid Architectures. Crystal Growth and Design, 2011, 11, 147-153.	3.0	52
50	Theoretical and experimental study of the response of CuO gas sensor under ozone. Sensors and Actuators B: Chemical, 2014, 190, 8-15.	7.8	52
51	Polymer-pyrolysis assisted synthesis of vanadium trioxide and carbon nanocomposites as high performance anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 261, 184-187.	7.8	52
52	Green and facile synthesis of Fe ₃ O ₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16206-16212.	10.3	50
53	Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons. Applied Physics Letters, 2007, 90, 213114.	3.3	49
54	Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. Journal of Solid State Chemistry, 2012, 190, 104-110.	2.9	46

#	Article	IF	CITATIONS
55	Sodium″on Hybrid Battery Combining an Anion″ntercalation Cathode with an Adsorptionâ€Type Anode for Enhanced Rate and Cycling Performance. Batteries and Supercaps, 2019, 2, 440-447.	4.7	46
56	Photoluminescence and photoconductivity properties of copper-doped Cd1â^xZnxS nanoribbons. Nanotechnology, 2006, 17, 5935-5940.	2.6	45
57	Wavelength-tunable lasing in single-crystal CdS1â^'XSeX nanoribbons. Nanotechnology, 2007, 18, 365606.	2.6	45
58	Facile Synthesis of Hollow Mesoporous CoFe ₂ O ₄ Nanospheres and Graphene Composites as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1010-1018.	3.4	45
59	Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability. Nanotechnology, 2011, 22, 245202.	2.6	43
60	Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells. Applied Physics Letters, 2012, 100, .	3.3	43
61	Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries. Journal of Solid State Chemistry, 2013, 201, 330-337.	2.9	43
62	Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties. Journal of Materials Chemistry, 2010, 20, 3006.	6.7	40
63	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	5.0	40
64	Evaporation-induced synthesis of carbon-supported Fe3O4 nanocomposites as anode material for lithium-ion batteries. CrystEngComm, 2013, 15, 1324.	2.6	38
65	Enhanced electrochemical performance of ZnO nanorod core/polypyrrole shell arrays by graphene oxide. Electrochimica Acta, 2016, 187, 517-524.	5.2	38
66	p -type conduction in beryllium-implanted hexagonal boron nitride films. Applied Physics Letters, 2009, 95, .	3.3	35
67	Accurate Determination of the Index of Refraction of Polymer Blend Films by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2010, 114, 15094-15101.	3.1	33
68	Annealing of P3HT:PCBM Blend Film—The Effect on Its Optical Properties. ACS Applied Materials & Interfaces, 2013, 5, 4247-4259.	8.0	33
69	Fabrication of CuInS ₂ -Sensitized Solar Cells via an Improved SILAR Process and Its Interface Electron Recombination. ACS Applied Materials & Interfaces, 2013, 5, 10605-10613.	8.0	32
70	Effect of PTB7 Properties on the Performance of PTB7:PC ₇₁ BM Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 13198-13207.	8.0	32
71	Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices. Advanced Materials, 2017, 29, 1606909.	21.0	32
72	Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Materials Today Energy, 2021, 20, 100659.	4.7	31

#	Article	IF	CITATIONS
73	Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition. Thin Solid Films, 2010, 518, 5372-5377.	1.8	30
74	Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 22692.	6.7	30
75	Development of a sustainable photocatalytic process for air purification Chemosphere, 2020, 257, 127236.	8.2	29
76	Synthesis of CdSXSe1â^'X Nanoribbons with Uniform and Controllable Compositions via Sulfurization: Optical and Electronic Properties Studies. Journal of Physical Chemistry C, 2009, 113, 17183-17188.	3.1	27
77	Studying cubic boron nitride by Raman and infrared spectroscopies. Diamond and Related Materials, 2010, 19, 968-971.	3.9	26
78	A comparative study on the electronic and optical properties of Sb2Se3 thin film. Semiconductors, 2017, 51, 1615-1624.	0.5	25
79	Near field control for enhanced photovoltaic performance and photostability in perovskite solar cells. Nano Energy, 2021, 89, 106388.	16.0	25
80	Catalyst-Assisted Formation of Nanocantilever Arrays on ZnS Nanoribbons by Post-Annealing Treatment. Journal of Physical Chemistry B, 2006, 110, 6759-6762.	2.6	24
81	Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition. Nanotechnology, 2006, 17, 2913-2917.	2.6	24
82	Room-Temperature-Synthesized High-Mobility Transparent Amorphous CdO–Ga ₂ O ₃ Alloys with Widely Tunable Electronic Bands. ACS Applied Materials & Interfaces, 2018, 10, 7239-7247.	8.0	24
83	Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Analytical and Bioanalytical Chemistry, 2018, 410, 2629-2636.	3.7	24
84	Improved Nanophotonic Front Contact Design for Highâ€Performance Perovskite Singleâ€Junction and Perovskite/Perovskite Tandem Solar Cells. Solar Rrl, 2021, 5, 2100509.	5.8	23
85	Ultraviolet-extended real-time spectroscopic ellipsometry for characterization of phase evolution in BN thin films. Applied Physics Letters, 2001, 78, 1982-1984.	3.3	22
86	Luminescent Properties of ZnO Nanorod Arrays Grown on Al:ZnO Buffer Layer. Journal of Physical Chemistry C, 2008, 112, 820-824.	3.1	22
87	Characterization of Low-Frequency Excess Noise in CH ₃ NH ₃ PbI ₃ -Based Solar Cells Grown by Solution and Hybrid Chemical Vapor Deposition Techniques. ACS Applied Materials & Interfaces, 2018, 10, 371-380.	8.0	22
88	Excitation of Bloch Surface Waves in Zero-Admittance Multilayers for High-Sensitivity Sensor Applications. Physical Review Applied, 2020, 13, .	3.8	22
89	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	12.7	22
90	Aluminium nitride films prepared by reactive magnetron sputtering. Journal Physics D: Applied Physics, 1997, 30, 2147-2155.	2.8	21

6

#	Article	IF	CITATIONS
91	Enhanced Raman scattering from vertical silicon nanowires array. Applied Physics Letters, 2011, 98, 183108.	3.3	21
92	Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Mikrochimica Acta, 2018, 185, 507.	5.0	21
93	Nitrogen-doped silicon nanowires: Synthesis and their blue cathodoluminescence and photoluminescence. Applied Physics Letters, 2009, 95, .	3.3	20
94	ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis. Applied Physics Letters, 2012, 101, .	3.3	20
95	Materials with extreme properties: Their structuring and applications. Vacuum, 2012, 86, 575-585.	3.5	20
96	Ferromagnetism in Ti-doped ZnO thin films. Journal of Applied Physics, 2015, 117, .	2.5	20
97	Graphene Oxide–Reduced Graphene Oxide Janus Membrane for Efficient Solar Generation of Water Vapor. ACS Applied Nano Materials, 2021, 4, 1916-1923.	5.0	20
98	Stoichiometry Controlled Bipolar Conductivity in Nanocrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub> <mml:mi>Ni</mml:mi> <mml:mi>x</mml:mi> <td>>Cd.s/mml +<td>:m19<mml:mi o><mml:mi>Î</mml:mi></mml:mi </td></td></mml:msub></mml:math 	>C d.s /mml + <td>:m19<mml:mi o><mml:mi>Î</mml:mi></mml:mi </td>	:m19 <mml:mi o><mml:mi>Î</mml:mi></mml:mi
99	Physical Review Applied, 2019, 11, . Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films. Electrochemistry Communications, 2012, 20, 178-181.	4.7	18
100	Energy density engineering via zero-admittance domains in all-dielectric stratified materials. Physical Review A, 2018, 97, .	2.5	18
101	Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe. Mikrochimica Acta, 2018, 185, 511.	5.0	17
102	A cubic boron nitride film-based fluorescent sensor for detecting Hg2+. Applied Physics Letters, 2009, 94, .	3.3	16
103	Integrated Nanorods and Heterostructure Field Effect Transistors for Gas Sensing. Journal of Physical Chemistry C, 2010, 114, 7999-8004.	3.1	16
104	One-pot synthesis of color-tunable copper doped zinc sulfide quantum dots for solid-state lighting devices. Journal of Alloys and Compounds, 2019, 787, 537-542.	5.5	16
105	Doubleâ€&ide Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Block‣ike Narrowâ€&andgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	14.9	16
106	Electronic structure and optical properties of CdSxSe1â^'x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations. Journal of Applied Physics, 2014, 116, .	2.5	15
107	A generalized Stark effect electromodulation model for extracting excitonic properties in organic semiconductors. Nature Communications, 2019, 10, 5089.	12.8	15
108	Infrared organic photovoltaic device based on charge transfer interaction between organic materials. Organic Electronics, 2013, 14, 291-294.	2.6	14

#	Article	IF	CITATIONS
109	Composition tuning of room-temperature nanolasers. Vacuum, 2012, 86, 737-741.	3.5	13
110	Solution-processable graphene oxide as an insulator layer for metal–insulator–semiconductor silicon solar cells. RSC Advances, 2013, 3, 17918.	3.6	13
111	Effect of Temperature, Time, Concentration, Annealing, and Substrates on ZnO Nanorod Arrays Growth by Hydrothermal Process on Hot Plate. Crystallography Reports, 2018, 63, 456-471.	0.6	13
112	Electronic structure at the interfaces of vertically aligned zinc oxide nanowires and sensitizing layers in photochemical solar cells. Journal Physics D: Applied Physics, 2011, 44, 325108.	2.8	12
113	Metalâ€Free and Metallated Polymers: Properties and Photovoltaic Performance. Macromolecular Chemistry and Physics, 2012, 213, 1300-1310.	2.2	12
114	Chemical states and ferromagnetism in heavily Mn-substituted zinc oxide thin films. Journal of Applied Physics, 2014, 115, .	2.5	12
115	Multichannel ellipsometry from 1.5 to 6.5 eV for real time characterization of wide band gap materials: phase identification in boron nitride thin films. Diamond and Related Materials, 2001, 10, 1304-1310.	3.9	11
116	Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials. Ceramics International, 2020, 46, 8979-8994.	4.8	11
117	Ultralow Thermal Conductivity in Dualâ€Doped nâ€Type Bi ₂ Te ₃ Material for Enhanced Thermoelectric Properties. Advanced Electronic Materials, 2021, 7, 2000910.	5.1	11
118	Real-time spectroscopic ellipsometry from 1.5 to 6.5 eV. Thin Solid Films, 2000, 364, 16-21.	1.8	10
119	Near-Ultraviolet Light-Emitting Devices Using Vertical ZnO Nanorod Arrays. Journal of Electronic Materials, 2012, 41, 853-856.	2.2	10
120	Exploiting nanostructure-thin film interfaces in advanced sensor device configurations. Vacuum, 2012, 86, 757-760.	3.5	10
121	Towards FDTD modeling of spectroscopic ellipsometry data at large angles of incidence. Applied Surface Science, 2013, 281, 2-7.	6.1	9
122	Surface-Enhanced Emission from Single Semiconductor Nanoribbons. Nano Letters, 2011, 11, 4626-4630.	9.1	8
123	On the development of Finite-Difference Time-Domain for modeling the spectroscopic ellipsometry response of 1D periodic structures. Thin Solid Films, 2014, 571, 356-363.	1.8	8
124	Construction and Evaluation of High-Quality n-ZnO Nanorod/p-Diamond Heterojunctions. Journal of Nanoscience and Nanotechnology, 2012, 12, 4560-4563.	0.9	7
125	Hole-induced large-area homoepitaxial growth of CdSe nanowire arrays for photovoltaic application. Journal of Materials Chemistry A, 2013, 1, 6313.	10.3	6
126	Evaluation of the dielectric function of colloidal Cd1â^xHgxTe quantum dot films by spectroscopic ellipsometry. Applied Surface Science, 2017, 421, 295-300.	6.1	6

#	Article	IF	CITATIONS
127	Enhanced Light Emission Performance of Mixed Cation Perovskite Films—The Effect of Solution Stoichiometry on Crystallization. Advanced Optical Materials, 2021, 9, 2100393.	7.3	6
128	High-quality single-crystal CdSe nanoribbons and their optical properties. Optoelectronics Letters, 2008, 4, 161-164.	0.8	5
129	Vertically aligned ZnO nanorods/CdS nanowires branched heterostructures: Cathodoluminescence properties and photovoltaic application. Journal of Crystal Growth, 2013, 374, 65-70.	1.5	5
130	The influence of TiO\$_{2}\$ nanostructure properties on the performance of TiO\$_{2}\$-based anodes in lithium ion battery applications. Turkish Journal of Physics, 2014, 38, 442-449.	1.1	5
131	Magnetism as a tool for band-gap narrowing of zinc oxide films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 77, 240-243.	2.4	5
132	Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Investigation, 2020, 38, 61-84.	1.3	5
133	Enhanced photocatalytic and antifungal activity of ZnO–Cu2+and Ag@ZnO–Cu2+ materials. Ceramics International, 2022, 48, 12660-12674.	4.8	5
134	Transmission optimization of multilayer OLED encapsulation based on spectroscopic ellipsometry. Thin Solid Films, 2013, 549, 22-29.	1.8	4
135	Convergence and precision characteristics of finite difference time domain method for the analysis of spectroscopic ellipsometry data at oblique incidence. Applied Surface Science, 2017, 421, 878-883.	6.1	4
136	A Family of Small Molecular Materials Enabling Consistently Lower Recombination Losses in Organic Photovoltaic Devices. Solar Rrl, 2020, 4, 2000245.	5.8	4
137	Influence of annealing temperature on the structural and optical properties of highly-oriented Al and Er co-doped ZnO films. Journal of Materials Science: Materials in Electronics, 2013, 24, 3868-3874.	2.2	3
138	Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites. Advanced Optical Materials, 2019, 7, 1900269.	7.3	3
139	Record-high near-band-edge optical nonlinearities and two-level model correction of poled polymers by spectroscopic electromodulation and ellipsometry. Science China Chemistry, 2022, 65, 584-593.	8.2	3
140	Solar Cells: Surface Engineering of ZnO Nanostructures for Semiconductorâ€ S ensitized Solar Cells (Adv. Mater. 31/2014). Advanced Materials, 2014, 26, 5575-5575.	21.0	2
141	On the modeling of ellipsometry data at large angles of incidence using finite-difference time-domain. Thin Solid Films, 2014, 571, 669-674.	1.8	2
142	Characterization of Wide Bandgap Thin Film Growth Using UV-Extended Real Time Spectroscopic Ellipsometry: Applications to Cubic Boron Nitride. Journal of Wide Bandgap Materials, 2002, 9, 191-206.	0.1	0
143	Light trapping considerations in self-assembled ZnO nanorod arrays for quantum dot sensitized solar cells. Proceedings of SPIE, 2014, , .	0.8	0
144	Ruddlesden–Popper Perovskites: Spontaneous Formation of Nanocrystals in Amorphous Matrix: Alternative Pathway to Bright Emission in Quasiâ€2D Perovskites (Advanced Optical Materials 19/2019). Advanced Optical Materials, 2019, 7, 1970074.	7.3	0

IF

ARTICLE All-Dielectric Interference Coating for Sensing Applications. , 2020, , .