List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865598/publications.pdf Version: 2024-02-01

ΔΝΝΕ ΤΛΗΤΕΠΥ

#	Article	IF	CITATIONS
1	Apolipoprotein F is reduced in humans with steatosis and controls plasma triglycerideâ€rich lipoprotein metabolism. Hepatology, 2023, 77, 1287-1302.	7.3	3
2	Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Reports, 2022, 4, 100387.	4.9	28
3	Enterohepatic, Gluco-metabolic, and Gut Microbial Characterization of Individuals With Bile Acid Malabsorption. , 2022, 1, 299-312.		5
4	Enterohepatic Takeda G-Protein Coupled Receptor 5 Agonism in Metabolic Dysfunction-Associated Fatty Liver Disease and Related Glucose Dysmetabolism. Nutrients, 2022, 14, 2707.	4.1	8
5	Deletion of fibroblast activation protein provides atheroprotection. Cardiovascular Research, 2021, 117, 1060-1069.	3.8	20
6	NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Reports, 2021, 3, 100222.	4.9	24
7	Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure–Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. Journal of Medicinal Chemistry, 2021, 64, 1593-1610.	6.4	9
8	Multiple Selection Criteria for Probiotic Strains with High Potential for Obesity Management. Nutrients, 2021, 13, 713.	4.1	19
9	Characterization of one anastomosis gastric bypass and impact of biliary and common limbs on bile acid and postprandial glucose metabolism in a minipig model. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E772-E783.	3.5	8
10	A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. Journal of Hepatology, 2021, 74, 1344-1354.	3.7	77
11	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	16.2	79
12	The ALGOVUE Clinical Trial: Effects of the Daily Consumption of Eggs Enriched with Lutein and Docosahexaenoic Acid on Plasma Composition and Macular Pigment Optical Density. Nutrients, 2021, 13, 3347.	4.1	9
13	Inflammationâ€induced cholestasis in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 70-90.	7.3	24
14	Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System. Frontiers in Molecular Neuroscience, 2021, 14, 808603.	2.9	9
15	Bile acids associate with glucose metabolism, but do not predict conversion from impaired fasting glucose to diabetes. Metabolism: Clinical and Experimental, 2020, 103, 154042.	3.4	21
16	Deletion of the nuclear receptor RORα in macrophages does not modify the development of obesity, insulin resistance and NASH. Scientific Reports, 2020, 10, 21095.	3.3	6
17	Analysis of the association of MPO and MMP-9 with stroke severity and outcome. Neurology, 2020, 95, e97-e108.	1.1	42
18	The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	3.3	45

#	Article	IF	CITATIONS
19	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
20	Plasma BCAA Changes in Patients With NAFLD Are Sex Dependent. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2311-2321.	3.6	39
21	Transcription profiling in the liver of undernourished male rat offspring reveals altered lipid metabolism pathways and predisposition to hepatic steatosis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1094-E1107.	3.5	6
22	Brain insulin response and peripheral metabolic changes in a Tau transgenic mouse model. Neurobiology of Disease, 2019, 125, 14-22.	4.4	16
23	Hepatic PPARα is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	3.7	53
24	Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell?. Current Opinion in Lipidology, 2019, 30, 244-254.	2.7	39
25	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	12.1	150
26	Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs. International Journal of Obesity, 2017, 41, 664-668.	3.4	21
27	Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152, 1679-1694.e3.	1.3	630
28	Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis, 2017, 257, 186-194.	0.8	17
29	Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 2017, 60, 4185-4211.	6.4	48
30	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	3.6	78
31	Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.	8.5	158
32	Metabolic effects of bile acid sequestration. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 138-144.	2.3	9
33	Lipid-lowering drugs prevent neurovascular and cognitive consequences of cardiopulmonary bypass. Vascular Pharmacology, 2016, 80, 59-66.	2.1	11
34	Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. International Journal of Obesity, 2016, 40, 1260-1267.	3.4	61
35	Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150, 650-658.	1.3	41
36	Bariatric surgery, lipoprotein metabolism and cardiovascular risk. Current Opinion in Lipidology, 2015, 26, 317-324.	2.7	15

#	Article	IF	CITATIONS
37	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	2.2	117
38	Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2473-2478.	7.1	310
39	Rapid and Body Weight–Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric Bypass. Circulation, 2015, 131, 871-881.	1.6	103
40	The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metabolism, 2015, 22, 418-426.	16.2	342
41	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	12.8	274
42	Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice. Transgenic Research, 2015, 24, 803-812.	2.4	8
43	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	7.3	55
44	Impact of Endotoxin Challenge in Obese Pigs. Shock, 2014, 41, 546-553.	2.1	10
45	Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly. Journal of Lipid Research, 2014, 55, 41-52.	4.2	15
46	<i>Cdkn2a</i> /p16 <i>Ink4a</i> Regulates Fasting-Induced Hepatic Gluconeogenesis Through the PKA-CREB-PGC1α Pathway. Diabetes, 2014, 63, 3199-3209.	0.6	36
47	The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology, 2014, 60, 1593-1606.	7.3	116
48	Sox17 Regulates Liver Lipid Metabolism and Adaptation to Fasting. PLoS ONE, 2014, 9, e104925.	2.5	15
49	Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology, 2013, 58, 1941-1952.	7.3	355
50	Long-term prognostic value of preprocedural adiponectin levels in patients undergoing percutaneous coronary intervention. International Journal of Cardiology, 2013, 168, 4921-4924.	1.7	3
51	Normal HDL–apo Al turnover and cholesterol enrichment of HDL subclasses in New Zealand rabbits with partial nephrectomy. Metabolism: Clinical and Experimental, 2013, 62, 492-498.	3.4	8
52	Detrimental Effects of Diet-Induced Obesity on Ï" Pathology Are Independent of Insulin Resistance in Ï" Transgenic Mice. Diabetes, 2013, 62, 1681-1688.	0.6	88
53	Activation of intestinal peroxisome proliferator-activated receptor-Â increases high-density lipoprotein production. European Heart Journal, 2013, 34, 2566-2574.	2.2	44
54	Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation. Journal of Lipid Research, 2013, 54, 1360-1368.	4.2	23

#	Article	IF	CITATIONS
55	171. Critical Care Medicine, 2013, 41, A37.	0.9	1
56	Inhibition of hepatic scavenger receptor-class B type I by RNA interference decreases atherosclerosis in rabbits. Atherosclerosis, 2012, 222, 360-366.	0.8	11
57	Roles of PPARs in NAFLD: Potential therapeutic targets. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 809-818.	2.4	229
58	Cellâ€derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation?. Journal of Cellular and Molecular Medicine, 2012, 16, 1365-1376.	3.6	65
59	Bone Marrow p16INK4a-Deficiency Does Not Modulate Obesity, Glucose Homeostasis or Atherosclerosis Development. PLoS ONE, 2012, 7, e32440.	2.5	14
60	$PPAR\hat{I}_{\pm}$ activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH. Atherosclerosis, 2011, 218, 69-76.	0.8	24
61	p16INK4a deficiency promotes IL-4–induced polarization and inhibits proinflammatory signaling in macrophages. Blood, 2011, 118, 2556-2566.	1.4	89
62	Overview of the Measurement of Lipids and Lipoproteins in Mice. Current Protocols in Mouse Biology, 2011, 1, 265-277.	1.2	2
63	Peroxisome Proliferator–Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1573-1579.	2.4	66
64	Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPARγ and LXRα Pathways. Circulation Research, 2011, 108, 985-995.	4.5	318
65	Rexinoid Bexarotene Modulates Triglyceride but not Cholesterol Metabolism via Gene-Specific Permissivity of the RXR/LXR Heterodimer in the Liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1488-1495.	2.4	63
66	Morphologic and Electroretinographic Phenotype of SR-BI Knockout Mice after a Long-Term Atherogenic Diet. , 2009, 50, 3931.		35
67	Novel non-carboxylic acid retinoids: 1,2,4-Oxadiazol-5-one derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 489-492.	2.2	15
68	Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochemical and Biophysical Research Communications, 2006, 340, 1259-1263.	2.1	156
69	The RXR Agonist Bexarotene Improves Cholesterol Homeostasis and Inhibits Atherosclerosis Progression in a Mouse Model of Mixed Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2731-2737.	2.4	69
70	Increased Susceptibility of Low-Density Lipoprotein to Ex Vivo Oxidation in Mice Transgenic for Human Apolipoprotein B Treated with 1 Melatonin-Related Compound Is Not Associated with Atherosclerosis Progression. Journal of Cardiovascular Pharmacology, 2005, 46, 241-249.	1.9	18
71	HOST GLUCOSE METABOLISM MEDIATES T4 AND IL-7 ACTION ON SCHISTOSOMA MANSONI DEVELOPMENT. Journal of Parasitology, 2005, 91, 737-744.	0.7	18
72	PPARα, but not PPARγ, Activators Decrease Macrophage-Laden Atherosclerotic Lesions in a Nondiabetic Mouse Model of Mixed Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1897-1902.	2.4	70

#	Article	IF	CITATIONS
73	Paradoxical exacerbation of combined hyperlipidemia in human apolipoprotein A-II transgenic mice treated with fenofibrate. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1737, 130-137.	2.4	20
74	Murine models to investigate pharmacological compounds acting as ligands of PPARs in dyslipidemia and atherosclerosis. Trends in Pharmacological Sciences, 2003, 24, 530-534.	8.7	26
75	Lipid Free Apolipoprotein E Binds to the Class B Type I Scavenger Receptor I (SR-BI) and Enhances Cholesteryl Ester Uptake from Lipoproteins. Journal of Biological Chemistry, 2002, 277, 36092-36099.	3.4	50
76	Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis, 2002, 164, 1-13.	0.8	126
77	Daily melatonin supplementation in mice increases atherosclerosis in proximal aorta. Biochemical and Biophysical Research Communications, 2002, 293, 1114-1123.	2.1	31
78	Melatonin related compounds inhibit lipid peroxidation during copper or free radical-induced LDL oxidation. Journal of Pineal Research, 2002, 33, 109-117.	7.4	25
79	Increased levels of high-density lipoprotein cholesterol are ineffective in inhibiting the development of immune responses to oxidized low-density lipoprotein and atherosclerosis in transgenic rabbits expressing human apolipoprotein (apo) A-I with severe hypercholesterolaemia. Clinical Science, 2001, 100–343-355	4.3	9
80	Increased levels of high-density lipoprotein cholesterol are ineffective in inhibiting the development of immune responses to oxidized low-density lipoprotein and atherosclerosis in transgenic rabbits expressing human apolipoprotein (apo) A-I with severe hypercholesterolaemia. Clinical Science, 2001, 100–343	4.3	8
81	Improved Lipid and Lipoprotein Profile, Hepatic Insulin Sensitivity, and Glucose Tolerance in 111²-Hydroxysteroid Dehydrogenase Type 1 Null Mice. Journal of Biological Chemistry, 2001, 276, 41293-41300.	3.4	395
82	Peroxisome Proliferator-activated Receptor \hat{I}_{\pm} Is Not Rate-limiting for the Lipoprotein-lowering Action of Fish Oil. Journal of Biological Chemistry, 2001, 276, 4634-4639.	3.4	70
83	Decreased Susceptibility to Diet-Induced Atherosclerosis in Human Apolipoprotein A-II Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2453-2458.	2.4	51
84	Paraoxonase Activity Is Reduced by a Pro-atherosclerotic Diet in Rabbits. Biochemical and Biophysical Research Communications, 2000, 269, 232-236.	2.1	85
85	Absence of relationship between plasma Lp(a), Lp-AI, anti-oxidized LDL autoantibodies, LDL immune complexes concentrations and restenosis after percutaneous transluminal coronary angioplasty. Clinica Chimica Acta, 2000, 299, 129-140.	1.1	12
86	3-Hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase. FEBS Letters, 1999, 452, 160-164.	2.8	80
87	Cholesterol Efflux, Lecithinâ^'Cholesterol Acyltransferase Activity, and Pre-β Particle Formation by Serum from Human Apolipoprotein A-I and Apolipoprotein A-I/Apolipoprotein A-II Transgenic Mice Consistent with the Latter Being Less Effective for Reverse Cholesterol Transportâ€. Biochemistry, 1997. 36. 2243-2249.	2.5	66
88	Transgenic Rabbits Expressing Human Apolipoprotein A-I in the Liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1424-1429.	2.4	55
89	Inhibition of Atherosclerosis Development in Cholesterol-Fed Human Apolipoprotein A-l–Transgenic Rabbits. Circulation, 1996, 94, 713-717.	1.6	184
90	A 700-bp fragment of the human antithrombin III promoter is sufficient to confer high, tissue-specific expression on human apolipoprotein A-II in transgenic mice. Gene, 1995, 156, 199-205.	2.2	17

#	Article	IF	CITATIONS
91	Prevention of in vitro low-density lipoprotein oxidation by an albumin-containing Lp A-I subfraction. Lipids and Lipid Metabolism, 1995, 1255, 31-38.	2.6	20
92	Tissue-specific Expression of the Human Gene for Lecithin: Cholesterol Acyltransferase in Transgenic Mice Alters Blood Lipids, Lipoproteins and Lipases towards a Less Atherogenic Profile. FEBS Journal, 1995, 230, 567-575.	0.2	53
93	Expression of apolipoprotein B epitopes in low density lipoproteins of hemodialyzed patients. Kidney International, 1993, 44, 1360-1365.	5.2	11