Hiroaki Sakurai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7865064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroaggregation effect of TiO2 nanoparticles on the photocatalytic activity and post-reaction separation for aqueous degradation of organic compounds. Journal of Environmental Chemical Engineering, 2021, 9, 104936.	6.7	5
2	A comparative study of the photocatalytic and optical properties of spinel-type titanates: A report for spinel sodium titanate. Journal of Solid State Chemistry, 2021, 304, 122593.	2.9	3
3	Photocatalytic hydrogen generation of monolithic porous titanium oxide-based glass–ceramics. Scientific Reports, 2020, 10, 11615.	3.3	15
4	Pt/TiO2 granular photocatalysts for hydrogen production from aqueous glycerol solution: Durability against seawater constituents and dissolved oxygen. Catalysis Communications, 2018, 114, 124-128.	3.3	22
5	Hydrogen evolution from glycerol aqueous solution under aerobic conditions over Pt/TiO ₂ and Au/TiO ₂ granular photocatalysts. Chemical Communications, 2016, 52, 13612-13615.	4.1	25
6	CO2 hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite. Applied Catalysis B: Environmental, 2015, 179, 37-43.	20.2	66
7	Gold nanoparticles deposited on Amberlyst-15: Metal–acid bifunctional catalyst for cellobiose conversion to gluconic acid. Catalysis Today, 2015, 251, 96-102.	4.4	19
8	Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu–Zn–Al oxide and HB zeolite using two-stage reactor system under low pressure. Catalysis Today, 2015, 242, 255-260.	4.4	30
9	Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet. Chemical Engineering and Processing: Process Intensification, 2014, 79, 1-6.	3.6	18
10	Colorless alkaline solution of chloride-free gold acetate for impregnation: An innovative method for preparing highly active Au nanoparticles catalyst. Applied Catalysis A: General, 2013, 462-463, 236-246.	4.3	15
11	Unusual Regenerable Porous Metal–Organic Framework Based on a New Triple Helical Molecular Necklace for Separating Organosulfur Compounds. Chemistry - A European Journal, 2012, 18, 16302-16309.	3.3	48
12	An approach to the storage of molecular oxygen into mordenite micropore by modification with 1,4-bis(hydroxydimethylsilyl)benzene. Microporous and Mesoporous Materials, 2012, 155, 34-39.	4.4	4
13	Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metalâ^'Organic Framework. Journal of the American Chemical Society, 2009, 131, 11302-11303.	13.7	772
14	Probing the Lewis Acid Sites and CO Catalytic Oxidation Activity of the Porous Metalâ^'Organic Polymer [Cu(5-methylisophthalate)]. Journal of the American Chemical Society, 2007, 129, 8402-8403.	13.7	327
15	Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal–Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions. Angewandte Chemie - International Edition, 2006, 45, 2542-2546.	13.8	506
16	Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal–Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions. Angewandte Chemie - International Edition, 2006, 45, 8086-8086.	13.8	3
17	Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction. Applied Catalysis A: General, 2005, 291, 179-187.	4.3	177
18	The roles of redox and acid–base properties of silica-supported vanadia catalysts in the selective oxidation of ethane. Catalysis Today, 2004, 93-95, 163-171.	4.4	60

Hiroaki Sakurai

#	Article	IF	CITATIONS
19	Surface Characterization of La2O3â^'TiO2and V2O5/La2O3â^'TiO2Catalysts. Journal of Physical Chemistry B, 2002, 106, 5695-5700.	2.6	119
20	Methanol formation from methane partial oxidation in CH4–O2–NO gaseous phase at atmospheric pressure. Applied Catalysis A: General, 2000, 190, 283-289.	4.3	41
21	Oxidation of ethane into acetaldehyde and acrolein over silica containing cesium and a very small amount of additives. Applied Catalysis A: General, 2000, 196, 37-42.	4.3	13
22	A kinetic study of methanol oxidation over SiO2. Applied Catalysis A: General, 2000, 198, 43-50.	4.3	19
23	Experimental Verification of Theoretically Calculated Transition Barriers of the Reactions in a Gaseous Selective Oxidation of CH4â^'O2â^'NO2. Journal of Physical Chemistry A, 2000, 104, 2648-2654.	2.5	48
24	Oxidative removal of co contained in hydrogen by using metal oxide catalysts. International Journal of Hydrogen Energy, 1999, 24, 355-358.	7.1	114
25	High Yield Methanol Formation in a CH4-O2-NO2Gaseous Selective Oxidation at 1 atm. Chemistry Letters, 1999, 28, 991-992.	1.3	7
26	Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides. Applied Catalysis A: General, 1998, 171, 123-130.	4.3	110
27	Preparation of Pd/CeO2 Catalyst for Methanol Decomposition. Studies in Surface Science and Catalysis, 1998, , 83-90.	1.5	9
28	Synergetic effect of nickel and platinum supported on silica in catalytic methanol decomposition. Chemical Communications, 1997, , 657-658.	4.1	9
29	Low-temperature water–gas shift reaction over gold deposited on TiO2. Chemical Communications, 1997, , 271-272.	4.1	179
30	Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides. Catalysis Today, 1996, 29, 361-365.	4.4	148
31	Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Applied Catalysis A: General, 1995, 127, 93-105.	4.3	172
32	Hydrogenation of CO2 over gold supported on metal oxides. Applied Catalysis A: General, 1993, 102, 125-136.	4.3	146
33	Mechanistic Studies of CO Oxidation on Highly Dispersed Gold Catalysts for Use in Room-Temperature Air Purification. Studies in Surface Science and Catalysis, 1993, 75, 2657-2660.	1.5	16
34	Microporous Pillared Mica with Cation-incorporated Silicate Surfaces. , 1992, , 282-295.		0
35	Pillared Tetrasilicic Mica Catalysts Having Fixed Interlayer Ca Ions. Comparison with Other Clays. Bulletin of the Chemical Society of Japan, 1991, 64, 227-235.	3.2	8
36	Pillared randomly interstratified clay as a highly heat-stable catalytic solid. Advanced Materials, 1991, 3, 558-561.	21.0	13

HIROAKI SAKURAI

#	Article	IF	CITATIONS
37	Pillared Tetrasilicic Mica Catalysts Modified by Fixed Interlayer Cations. Classification of Fixation Mode by Cations. Bulletin of the Chemical Society of Japan, 1990, 63, 1389-1395.	3.2	14
38	Acidity Enhanced Pillared Clay Catalysts. Modification of Exchangeable Sites on Fluor-tetrasilicic Mica by the Fixed Interlayer Cations. Bulletin of the Chemical Society of Japan, 1989, 62, 3221-3228.	3.2	12
39	Cation-exchanged synthetic saponite as a †heat-stable' acidic clay catalyst. Journal of the Chemical Society Chemical Communications, 1988, , 1520-1521.	2.0	15
40	New acidic pillared clay catalysts prepared from fluor-tetrasilicic mica. Journal of the Chemical Society Chemical Communications, 1988, , 1519.	2.0	9
41	Vapor-phase beckmann rearrangement over alumina-supported boria catalyst prepared by vapor decomposition method. Applied Catalysis, 1987, 29, 107-115.	0.8	114
42	Pillared synthetic saponite as an efficient alkylation catalyst. Journal of the Chemical Society Chemical Communications, 1986, , 1074.	2.0	27
43	CATALYTIC BEHAVIOR OF BORIA-ALUMINA PREPARED BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. Chemistry Letters, 1985, 14, 1783-1784.	1.3	24
44	VAPOR-PHASE BECKMANN REARRANGEMENT OF CYCLOHEXANONE OXIME OVER SILICA-BORIA CATALYST PREPARED BY CHEMICAL VAPOR DEPOSITION METHOD. Chemistry Letters, 1985, 14, 277-278.	1.3	18