
Yong Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehending the occupying preference of manganese substitution in crystalline cement clinker phases: A theoretical study. Cement and Concrete Research, 2018, 109, 19-29.	4.6	59
2	Highly dispersed PtPd on graphitic nanofibers and its heavy d-Ï€ effect. Applied Catalysis B: Environmental, 2019, 259, 118080.	10.8	46
3	Understanding the zinc incorporation into silicate clinker during waste co-disposal of cement kiln: A density functional theory study. Journal of Cleaner Production, 2019, 232, 329-336.	4.6	33
4	Fundamental principles that govern the copper doping behavior in complex clinker system. Journal of the American Ceramic Society, 2018, 101, 2527-2536.	1.9	29
5	Enhanced Sulfate Resistance: The Importance of Iron in Aluminate Hydrates. ACS Sustainable Chemistry and Engineering, 2019, 7, 6792-6801.	3.2	22
6	Predicting Hydration Reactivity of Cu-Doped Clinker Crystals by Capturing Electronic Structure Modification. ACS Sustainable Chemistry and Engineering, 2019, 7, 6412-6421.	3.2	20
7	Intrinsic reactivity and dissolution characteristics of tetracalcium aluminoferrite. Cement and Concrete Research, 2021, 146, 106485.	4.6	18
8	Atomic occupancy mechanism in brownmillerite Ca 2 FeAlO 5 from a thermodynamic perspective. Journal of the American Ceramic Society, 2020, 103, 635-644.	1.9	15
9	Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. Journal of the American Ceramic Society, 2018, 101, 5177-5187.	1.9	14
10	The impact of Fe dosage on the ettringite formation during high ferrite cement hydration. Journal of the American Ceramic Society, 2021, 104, 3652-3664.	1.9	12
11	Anomalous Dielectric Nonlinearity in Niobium and Aluminum Co-doped SrTiO ₃ Ceramics with Giant Permittivity and Low Dielectric Loss. Journal of Physical Chemistry C, 2019, 123, 18142-18149.	1.5	11
12	Atomistic thermodynamics and kinetics of dicalcium silicate dissolution. Cement and Concrete Research, 2022, 157, 106833.	4.6	11
13	Atomic-level insights into the influence of zinc incorporation on clinker hydration reactivity. Open Ceramics, 2020, 1, 100004.	1.0	6
14	Giant permittivity in Nb-doped SrTiO3 single crystal: Compositional gradient and local structure. Ceramics International, 2022, 48, 29572-29579.	2.3	6
15	Screening Out Reactivity-Promoting Candidates for γ-Ca2SiO4 Carbonation by First-Principles Calculations. Frontiers in Materials, 2020, 7, .	1.2	5
16	Adsorption behavior of carbonic acid on γâ€dicalcium silicate surface from molecular simulations. Journal of the American Ceramic Society, 0, , .	1.9	5
17	Chloride Adsorption Capacity of Monocarbonate: The Importance of Iron Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 5621-5632.	3.2	3