
Anne-Marie Malfait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7864544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis and Cartilage, 2001, 9, 539-552.	0.6	356
2	Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis and Rheumatism, 2007, 56, 575-585.	6.7	354
3	Inhibition of ADAM-TS4 and ADAM-TS5 Prevents Aggrecan Degradation in Osteoarthritic Cartilage. Journal of Biological Chemistry, 2002, 277, 22201-22208.	1.6	262
4	Towards a mechanism-based approach to pain management in osteoarthritis. Nature Reviews Rheumatology, 2013, 9, 654-664.	3.5	242
5	CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20602-20607.	3.3	231
6	Osteoarthritis joint pain: The cytokine connection. Cytokine, 2014, 70, 185-193.	1.4	213
7	α2-Macroglobulin Is a Novel Substrate for ADAMTS-4 and ADAMTS-5 and Represents an Endogenous Inhibitor of These Enzymes. Journal of Biological Chemistry, 2004, 279, 17554-17561.	1.6	123
8	On the predictive utility of animal models of osteoarthritis. Arthritis Research and Therapy, 2015, 17, 225.	1.6	123
9	A commentary on modelling osteoarthritis pain in small animals. Osteoarthritis and Cartilage, 2013, 21, 1316-1326.	0.6	121
10	Osteoarthritis year in review 2015: biology. Osteoarthritis and Cartilage, 2016, 24, 21-26.	0.6	120
11	PCSK6-mediated corin activation is essential for normal blood pressure. Nature Medicine, 2015, 21, 1048-1053.	15.2	117
12	ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthritis and Cartilage, 2010, 18, 572-580.	0.6	114
13	Proprotein Convertase Furin Interacts with and Cleaves Pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi Network. Journal of Biological Chemistry, 2004, 279, 15434-15440.	1.6	103
14	Anti-IL-12 and anti-TNF antibodies synergistically suppress the progression of murine collagen-induced arthritis. European Journal of Immunology, 1999, 29, 2205-2212.	1.6	88
15	Synovial fluid from patients with early osteoarthritis modulates fibroblastâ€like synoviocyte responses to Tollâ€like receptor 4 and Tollâ€like receptor 2 ligands via soluble CD14. Arthritis and Rheumatism, 2012, 64, 2268-2277.	6.7	83
16	Damageâ€Associated Molecular Patterns Generated in Osteoarthritis Directly Excite Murine Nociceptive Neurons Through Tollâ€like Receptor 4. Arthritis and Rheumatology, 2015, 67, 2933-2943.	2.9	83
17	Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain, 2019, 160, 2210-2220.	2.0	78
18	Peripheral Mechanisms Contributing to Osteoarthritis Pain. Current Rheumatology Reports, 2018, 20, 9.	2.1	73

2

ANNE-MARIE MALFAIT

#	Article	IF	CITATIONS
19	High Resolution Crystal Structure of the Catalytic Domain of ADAMTS-5 (Aggrecanase-2). Journal of Biological Chemistry, 2008, 283, 1501-1507.	1.6	72
20	An aggrecan fragment drives osteoarthritis pain through Toll-like receptor 2. JCI Insight, 2018, 3, .	2.3	72
21	Nanoparticles for Improved Local Retention after Intra-Articular Injection into the Knee Joint. Pharmaceutical Research, 2013, 30, 257-268.	1.7	69
22	ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms. Archives of Biochemistry and Biophysics, 2005, 444, 34-44.	1.4	66
23	The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis and Cartilage, 2020, 28, 562-571.	0.6	65
24	A Review of the ADAMTS Family, Pharmaceutical Targets of the Future. Current Pharmaceutical Design, 2009, 15, 2359-2374.	0.9	64
25	Proprotein convertase activation of aggrecanases in cartilage in situ. Archives of Biochemistry and Biophysics, 2008, 478, 43-51.	1.4	63
26	Therapeutic effects of an anti-ADAMTS-5 antibody on joint damage and mechanical allodynia in a murine model of osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 299-306.	0.6	62
27	Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models?. Current Opinion in Rheumatology, 2017, 29, 110-118.	2.0	53
28	Structural and Inhibition Analysis Reveals the Mechanism of Selectivity of a Series of Aggrecanase Inhibitors. Journal of Biological Chemistry, 2009, 284, 24185-24191.	1.6	52
29	A role for PACE4 in osteoarthritis pain: evidence from human genetic association and null mutant phenotype. Annals of the Rheumatic Diseases, 2012, 71, 1042-1048.	0.5	49
30	What is new in pain modification in osteoarthritis?. Rheumatology, 2018, 57, iv99-iv107.	0.9	49
31	Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthritis and Rheumatism, 2006, 54, 2912-2922.	6.7	48
32	Chemogenetic Inhibition of Pain Neurons in a Mouse Model of Osteoarthritis. Arthritis and Rheumatology, 2017, 69, 1429-1439.	2.9	48
33	Chronic relapsing homologous collagenâ€induced arthritis in DBA/1 mice as a model for testing diseaseâ€modifying and remissionâ€inducing therapies. Arthritis and Rheumatism, 2001, 44, 1215-1224.	6.7	47
34	Osteoarthritis pain: What are we learning from animal models?. Best Practice and Research in Clinical Rheumatology, 2017, 31, 676-687.	1.4	46
35	ADAMâ€8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala ²⁷¹ . Arthritis and Rheumatism, 2009, 60, 2704-2713.	6.7	45
36	Emerging Targets for the Management of Osteoarthritis Pain. Current Osteoporosis Reports, 2016, 14, 260-268.	1.5	44

ANNE-MARIE MALFAIT

#	Article	IF	CITATIONS
37	Identification of an ADAMTS-4 Cleavage Motif Using Phage Display Leads to the Development of Fluorogenic Peptide Substrates and Reveals Matrilin-3 as a Novel Substrate. Journal of Biological Chemistry, 2007, 282, 11101-11109.	1.6	42
38	Visualization of Peripheral Neuron Sensitization in a Surgical Mouse Model of Osteoarthritis by In Vivo Calcium Imaging. Arthritis and Rheumatology, 2018, 70, 88-97.	2.9	41
39	The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis and Cartilage, 2019, 27, 1669-1679.	0.6	41
40	Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Archives of Biochemistry and Biophysics, 2010, 499, 32-39.	1.4	39
41	The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clinics in Geriatric Medicine, 2022, 38, 221-238.	1.0	38
42	An emerging role for Toll-like receptors at the neuroimmune interface in osteoarthritis. Seminars in Immunopathology, 2019, 41, 583-594.	2.8	37
43	Spinal microglial activation in a murine surgical model of knee osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 718-726.	0.6	35
44	Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Current Rheumatology Reports, 2013, 15, 350.	2.1	34
45	Will the Real Aggrecanase(s) Step Up: Evaluating the Criteria that Define Aggrecanase Activity in Osteoarthritis. Current Pharmaceutical Biotechnology, 2008, 9, 16-23.	0.9	32
46	Substrate-Dependent Inhibition Kinetics of an Active Site-Directed Inhibitor of ADAMTS-4 (Aggrecanase) Tj ETQ)q0 0 0 rgB ⁻ 1.2	T /Overlock 10
47	The Role of Peripheral Nociceptive Neurons in the Pathophysiology of Osteoarthritis Pain. Current Osteoporosis Reports, 2015, 13, 318-326.	1.5	31
48	Disease Burden in Osteoarthritis Is Similar to That of Rheumatoid Arthritis at Initial Rheumatology Visit and Significantly Greater Six Months Later. Arthritis and Rheumatology, 2019, 71, 1276-1284.	2.9	29
49	The role of intra-articular neuronal CCR2 receptors in knee joint pain associated with experimental osteoarthritis in mice. Arthritis Research and Therapy, 2021, 23, 103.	1.6	27
50	Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Reports, 2021, 6, e892.	1.4	26
51	Intra-articular injection of tumor necrosis factor-α in the rat: an acute and reversible in vivo model of cartilage proteoglycan degradation. Osteoarthritis and Cartilage, 2009, 17, 627-635.	0.6	25
52	Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. , 2020, 211, 107553.		25
53	Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis and Cartilage, 2020, 28, 581-592.	0.6	23
54	Basic Mechanisms of Pain in Osteoarthritis. Rheumatic Disease Clinics of North America, 2021, 47, 165-180.	0.8	23

4

ANNE-MARIE MALFAIT

#	Article	IF	CITATIONS
55	Standardization of nutrient media for isolated human articular chondrocytes in gelified agarose suspension culture. Osteoarthritis and Cartilage, 1995, 3, 249-259.	0.6	22
56	Current status of nerve growth factor antibodies for the treatment of osteoarthritis pain. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 85-87.	0.4	22
57	Pain in the Ehlers–Danlos syndromes: Mechanisms, models, and challenges. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2021, 187, 429-445.	0.7	21
58	Development of a Cartilage Shear-Damage Model to Investigate the Impact of Surface Injury on Chondrocytes and Extracellular Matrix Wear. Cartilage, 2017, 8, 444-455.	1.4	19
59	Chemokine receptorâ€7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 864-875.	1.2	19
60	Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain, 2022, 163, 560-578.	2.0	19
61	Identification and Characterization of UK-201844, a Novel Inhibitor That Interferes with Human Immunodeficiency Virus Type 1 gp160 Processing. Antimicrobial Agents and Chemotherapy, 2007, 51, 3554-3561.	1.4	14
62	Structure analysis reveals the flexibility of the ADAMTSâ $\in 5$ active site. Protein Science, 2011, 20, 735-744.	3.1	14
63	Pain-related behaviors and abnormal cutaneous innervation in a murine model of classical Ehlers–Danlos syndrome. Pain, 2020, 161, 2274-2283.	2.0	13
64	Animal Models of Ehlers–Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Frontiers in Genetics, 2021, 12, 726474.	1.1	11
65	The usual suspects: Verdict not guilty?. Arthritis and Rheumatism, 2003, 48, 3304-3307.	6.7	10
66	Can we target CCR2 to treat osteoarthritis? The trick is in the timing!. Osteoarthritis and Cartilage, 2017, 25, 799-801.	0.6	10
67	T Cell Receptor Vβ Usage in Rheumatoid Nodules: Marked Oligoclonality among IL-2 Expanded Lymphocytes. Clinical Immunology and Immunopathology, 1993, 68, 29-34.	2.1	9
68	The "elusive DMOAD": Aggrecanase inhibition from laboratory to clinic. Clinical and Experimental Rheumatology, 2019, 37 Suppl 120, 130-134.	0.4	7
69	Size distribution of native aggrecan aggregates of human articular chondrocytes in agarose. In Vitro Cellular and Developmental Biology - Animal, 1993, 29, 356-358.	0.7	6
70	Time to be positive about negative data?. Osteoarthritis and Cartilage, 2017, 25, 351-353.	0.6	6
71	A high performance liquid chromatography assay for monitoring proprotein convertase activity. Journal of Chromatography A, 2007, 1148, 46-54.	1.8	4
72	ADAMTS-4 and ADAMTS-5. , 2005, , 299-322.		2

#	Article	IF	CITATIONS
73	Modelling pain in post-traumatic osteoarthritis of the knee. Pain, 2012, 153, 257-258.	2.0	2
74	Why we should study pain in animal models of rheumatic diseases. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 37-39.	0.4	2
75	Monoclonal Antibody Therapy in Rheumatoid Arthritis. BioDrugs, 1994, 1, 148-156.	0.7	1
76	Pain in rheumatic diseases. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 1.	0.4	0