Weili Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7864303/publications.pdf

Version: 2024-02-01

94269 143772 6,458 56 37 57 citations h-index g-index papers 57 57 57 6414 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy, 2022, 91, 106656.	8.2	26
2	Superstretchable electrode based on hierarchical assembly of triblock copolymer fiber membrane. Chemical Engineering Journal, 2022, 430, 132911.	6.6	9
3	Controllable in-situ-oxidization of 3D-networked Ti3C2T -TiO2 photodetectors for large-area flexible optical imaging. Nano Energy, 2022, 93, 106889.	8.2	17
4	Structurally Unraveling the Photocarrier Behavior of Cu ₂ O/ZnO Heterojunction Photodetectors. ACS Photonics, 2022, 9, 268-274.	3.2	14
5	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	18.7	145
6	Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Reports Physical Science, 2022, 3, 100814.	2.8	29
7	Understanding the Enhancement Mechanism of ZnO Nanorod-based Piezoelectric Devices through Surface Engineering. ACS Applied Materials & Surface Engineering.	4.0	15
8	MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Research, 2021, 14, 4833-4840.	5.8	51
9	Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano, 2021, 15, 11555-11563.	7.3	163
10	Ambulatory Cardiovascular Monitoring Via a Machineâ€Learningâ€Assisted Textile Triboelectric Sensor. Advanced Materials, 2021, 33, e2104178.	11.1	167
11	From high-yield Ti3AlCN ceramics to high-quality Ti3CNT MXenes through eliminating Al segregation. Chinese Chemical Letters, 2020, 31, 1044-1048.	4.8	21
12	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	8.2	172
13	Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 69, 104431.	8.2	78
14	Engineering Materials at the Nanoscale for Triboelectric Nanogenerators. Cell Reports Physical Science, 2020, 1, 100142.	2.8	130
15	Understanding the Potential Screening Effect through the Discretely Structured ZnO Nanorods Piezo Array. Nano Letters, 2020, 20, 4270-4277.	4.5	47
16	Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy, 2020, 72, 104706.	8.2	207
17	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	13.1	513
18	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	4.5	231

#	Article	IF	CITATIONS
19	Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators. ACS Nano, 2020, 14, 9050-9058.	7.3	88
20	Coaxially enhanced photocarrier transport of a highly oriented Cu ₂ ZnSnS ₄ /ZnO photodetector through the nanoconfinement effect. Journal of Materials Chemistry C, 2020, 8, 3491-3497.	2.7	13
21	The ratiometric fluorescent probes for monitoring the reactive inorganic sulfur species (RISS) signal in the living cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118141.	2.0	13
22	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Diterfaces, 2020, 12, 10341-10349.	4.0	77
23	Microchannelâ€Confined MXene Based Flexible Piezoresistive Multifunctional Microâ€Force Sensor. Advanced Functional Materials, 2020, 30, 1909603.	7.8	248
24	Massively manufactured paper-based all-solid-state flexible micro-supercapacitors with sprayable MXene conductive inks. Journal of Power Sources, 2019, 415, 1-7.	4.0	79
25	Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 2019, 301, 136-144.	2.6	69
26	A piezo-phototronic enhanced serrate-structured ZnO-based heterojunction photodetector for optical communication. Nanoscale, 2019, 11, 3021-3027.	2.8	53
27	Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59, 574-581.	8.2	204
28	Extremely low self-discharge solid-state supercapacitors <i>via</i> the confinement effect of ion transfer. Journal of Materials Chemistry A, 2019, 7, 8633-8640.	5. 2	88
29	Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochimica Acta, 2019, 307, 302-309.	2.6	95
30	Allâ€Sprayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible Allâ€Solidâ€State Supercapacitor. Energy Technology, 2019, 7, 1801109.	1.8	6
31	Iron-Catalyzed Oxyalkylation of Terminal Alkynes with Alkyl Iodides. Organic Letters, 2019, 21, 261-265.	2.4	16
32	Enhancing Lithium Adsorption and Diffusion toward Extraordinary Lithium Storage Capability of Freestanding Ti ₃ C ₂ T _{<i>x</i>} MXene. Journal of Physical Chemistry C, 2019, 123, 2792-2800.	1,5	40
33	Allâ€Sprayedâ€Processable, Largeâ€Area, and Flexible Perovskite/MXeneâ€Based Photodetector Arrays for Photocommunication. Advanced Optical Materials, 2019, 7, 1801521.	3.6	144
34	Rationally assembled porous carbon superstructures for advanced supercapacitors. Chemical Engineering Journal, 2019, 361, 1296-1303.	6.6	67
35	One-step hot injection synthesis of gradient alloy CdxZn1-xSySe1-y quantum dots with large-span self-regulating ability. Journal of Luminescence, 2019, 206, 565-570.	1.5	9
36	Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.	8.2	331

#	Article	IF	Citations
37	Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides and <i>N</i> -Fluorobenzenesulfonimide. Journal of the American Chemical Society, 2019, 141, 548-559.	6.6	162
38	Iron-Catalyzed Carboiodination of Alkynes. Synthesis, 2018, 50, 2974-2980.	1.2	11
39	An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator. Nanoscale, 2018, 10, 843-847.	2.8	29
40	Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41070-41075.	4.0	136
41	Polarization-free high-crystallization \hat{l}^2 -PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy, 2018, 50, 632-638.	8.2	150
42	Merging Visible-Light Photocatalysis and Transition-Metal Catalysis in Three-Component Alkyl-Fluorination of Olefins with a Fluoride Ion. Organic Letters, 2018, 20, 4245-4249.	2.4	55
43	Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator. Nanotechnology, 2017, 28, 135401.	1.3	31
44	Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy, 2017, 38, 185-192.	8.2	152
45	Preparation and luminescent properties of self-organized broccoli-like SrMoO4: Pr3+ superparticles. Journal of Luminescence, 2017, 190, 69-75.	1.5	24
46	High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chemical Engineering Journal, 2017, 322, 73-81.	6.6	119
47	Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Materials, 2017, 9, e358-e358.	3.8	75
48	Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38323-38335.	4.0	15
49	Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. ACS Nano, 2017, 11, 7440-7446.	7. 3	293
50	A Musselâ€Inspired Conductive, Selfâ€Adhesive, and Selfâ€Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small, 2017, 13, 1601916.	5.2	543
51	Microstructure-Based Interfacial Tuning Mechanism of Capacitive Pressure Sensors for Electronic Skin. Journal of Sensors, 2016, 2016, 1-8.	0.6	23
52	Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops. Advanced Materials, 2016, 28, 1650-1656.	11.1	334
53	Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS Nano, 2016, 10, 6241-6247.	7. 3	277
54	A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale, 2016, 8, 16302-16306.	2.8	76

WEILI DENG

#	Article	lF	CITATION
55	Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano, 2016, 10, 7874-7881.	7.3	179
56	Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy, 2015, 16, 516-523.	8.2	96