
Jordan C Ciciliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7864168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science, 2013, 339, 580-584.	12.6	2,137
2	Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells. Science Translational Medicine, 2013, 5, 179ra47.	12.4	910
3	RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature, 2012, 487, 510-513.	27.8	439
4	Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nature Biomedical Engineering, 2018, 2, 453-463.	22.5	118
5	Single-platelet nanomechanics measured by high-throughput cytometry. Nature Materials, 2017, 16, 230-235.	27.5	88
6	Biopolymer System for Cell Recovery from Microfluidic Cell Capture Devices. Analytical Chemistry, 2012, 84, 3682-3688.	6.5	86
7	A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nature Communications, 2018, 9, 509.	12.8	70
8	Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood, 2015, 126, 817-824.	1.4	66
9	Platelets and physics: How platelets "feel―and respond to their mechanical microenvironment. Blood Reviews, 2015, 29, 377-386.	5.7	52
10	Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood, 2017, 130, 2654-2663.	1.4	47
11	Biomechanics of haemostasis and thrombosis in health and disease: from the macro―to molecular scale. Journal of Cellular and Molecular Medicine, 2013, 17, 579-596.	3.6	35
12	The Platelet and the Biophysical Microenvironment: Lessons from Cellular Mechanics. Thrombosis Research, 2014, 133, 532-537.	1.7	10
13	Stiffness based enrichment of leukemia cells using microfluidics. APL Bioengineering, 2020, 4, 036101.	6.2	7
14	Probing blood cell mechanics of hematologic processes at the single micron level. Lab on A Chip, 2017, 17, 3804-3816.	6.0	6
15	A Microengineered Matrix to Decouple the Biophysical and Biochemical Mechanisms of Blood Cell Interactions with Thrombi and Vascular Wall Matrices. Blood, 2016, 128, 555-555.	1.4	1
16	New Insights Into The Mechanisms Of Ferric Chloride-Induced Thrombosis: a Reductionist Microfluidic Approach. Blood, 2013, 122, 2308-2308.	1.4	0
17	Investigating Platelet Interactions in Sickle Cell Disease Using a Novel Multi-Shear "Endothelialized" Microfluidic System. Blood, 2014, 124, 4155-4155.	1.4	0
18	Commonly Used Clinical Intravenous Fluid Formulations Differentially Affect Sickle Red Blood Cell Stiffness and Transit Time. Blood, 2015, 126, 2164-2164.	1.4	0

#	Article	IF	CITATIONS
19	Real-Time Visualization of Shear-Dependent Erythrocyte Deformation into Schistocytes Using Single Micron Microfluidics. Blood, 2018, 132, 1030-1030.	1.4	0