
Clara Camaschella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7864045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mutual crosstalk between iron and erythropoiesis. International Journal of Hematology, 2022, 116, 182-191.	1.6	11
2	NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica, 2021, 106, 795-805.	3.5	37
3	The EHA Research Roadmap: Anemias. HemaSphere, 2021, 5, e607.	2.7	7
4	Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood, 2021, 138, 965-976.	1.4	58
5	Mendelian inheritance of anemia due to disturbed iron homeostasis. Seminars in Hematology, 2021, 58, 175-181.	3.4	3
6	Vaccine efficacy and iron deficiency: an intertwined pair?. Lancet Haematology,the, 2021, 8, e666-e669.	4.6	28
7	Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clinical Cancer Research, 2020, 26, 6387-6398.	7.0	36
8	Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 2020, 105, 260-272.	3.5	349
9	Iron Causes Lipid Oxidation and Inhibits Proteasome Function in Multiple Myeloma Cells: A Proof of Concept for Novel Combination Therapies. Cancers, 2020, 12, 970.	3.7	21
10	The changing landscape of iron deficiency. Molecular Aspects of Medicine, 2020, 75, 100861.	6.4	32
11	Hepcidin and Anemia: A Tight Relationship. Frontiers in Physiology, 2019, 10, 1294.	2.8	133
12	GDF11 is not the target of luspatercept. Blood, 2019, 134, 500-501.	1.4	10
13	Iron deficiency. Blood, 2019, 133, 30-39.	1.4	363
14	Transient decrease of serum iron after acute erythropoietin treatment contributes to hepcidin inhibition by ERFE in mice. Haematologica, 2019, 104, e87-e90.	3.5	19
15	The Immunophilin FKBP12 Inhibits Hepcidin By Modulating BMP Type I-Type II Receptors Interaction and Ligand Responsiveness. Blood, 2019, 134, 430-430.	1.4	1
16	Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood, 2018, 132, 2286-2297.	1.4	28
17	Advances in understanding iron metabolism and its crosstalk with erythropoiesis. British Journal of Haematology, 2018, 182, 481-494.	2.5	22
18	Anemia in the Elderly. HemaSphere, 2018, 2, e40.	2.7	71

#	Article	IF	CITATIONS
19	New insights into iron deficiency and iron deficiency anemia. Blood Reviews, 2017, 31, 225-233.	5.7	181
20	Clinical significance of somatic mutation in unexplained blood cytopenia. Blood, 2017, 129, 3371-3378.	1.4	379
21	A new form of IRIDA due to combined heterozygous mutations of TMPRSS6 and ACVR1A encoding the BMP receptor ALK2. Blood, 2017, 129, 3392-3395.	1.4	18
22	Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. American Journal of Hematology, 2017, 92, 1068-1078.	4.1	290
23	The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood, 2017, 130, 2111-2120.	1.4	49
24	Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. British Journal of Haematology, 2016, 172, 512-523.	2.5	124
25	Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood, 2016, 127, 2327-2336.	1.4	90
26	The Repair of Skeletal Muscle Requires Iron Recycling through Macrophage Ferroportin. Journal of Immunology, 2016, 197, 1914-1925.	0.8	44
27	Functional Analysis of <i>GLRX5</i> Mutants Reveals Distinct Functionalities of GLRX5 Protein. Journal of Cellular Biochemistry, 2016, 117, 207-217.	2.6	36
28	Unraveling the Erythroid Function of Tfr2 in Beta-Thalassemia. Blood, 2016, 128, 73-73.	1.4	0
29	The second transferrin receptor regulates red blood cell production in mice. Blood, 2015, 125, 1170-1179.	1.4	130
30	Bmp6 Expression in Murine Liver Non Parenchymal Cells: A Mechanism to Control their High Iron Exporter Activity and Protect Hepatocytes from Iron Overload?. PLoS ONE, 2015, 10, e0122696.	2.5	61
31	Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica, 2015, 100, 458-465.	3.5	48
32	Iron-Deficiency Anemia. New England Journal of Medicine, 2015, 372, 1832-1843.	27.0	1,074
33	Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma. Haematologica, 2015, 100, 534-841.	3.5	45
34	The extrahepatic role of TFR2 in iron homeostasis. Frontiers in Pharmacology, 2014, 5, 93.	3.5	36
35	The erythroid function of transferrin receptor 2 revealed by Tmprss6 inactivation in different models of transferrin receptor 2 knockout mice. Haematologica, 2014, 99, 1016-1021.	3.5	32
36	Functional and Clinical Impact of Novel <i>Tmprss6</i> Variants in Iron-Refractory Iron-Deficiency Anemia Patients and Genotype-Phenotype Studies. Human Mutation, 2014, 35, n/a-n/a.	2.5	53

#	Article	IF	CITATIONS
37	Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nature Communications, 2014, 5, 4926.	12.8	192
38	How I treat unexplained refractory iron deficiency anemia. Blood, 2014, 123, 326-333.	1.4	127
39	Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood, 2014, 124, 2750-2751.	1.4	40
40	Iron refractory iron deficiency anemia. Haematologica, 2013, 98, 845-853.	3.5	142
41	How to Assess Causality of <i>TMPRSS6</i> Mutations?. Human Mutation, 2013, 34, 1043-1045.	2.5	6
42	How I manage patients with atypical microcytic anaemia. British Journal of Haematology, 2013, 160, 12-24.	2.5	40
43	Treating Iron Overload. New England Journal of Medicine, 2013, 368, 2325-2327.	27.0	39
44	Iron and hepcidin: a story of recycling and balance. Hematology American Society of Hematology Education Program, 2013, 2013, 1-8.	2.5	76
45	Genetic/metabolic effect of iron metabolism and rare anemias. Thalassemia Reports, 2013, 3, 4.	0.5	0
46	Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica, 2013, 98, 971-979.	3.5	40
47	Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia. Blood, 2012, 119, 5021-5029.	1.4	141
48	Identification and characterization of the first <scp>SLC</scp> 11 <scp>A</scp> 2 isoform 1a mutation causing a defect in splicing process and an hypomorphic allele expression of the <i><scp>SLC</scp>11<scp>A</scp>2</i> gene. British Journal of Haematology, 2012, 159, 492-495.	2.5	6
49	Molecular Mechanisms Regulating Hepcidin Revealed by Hepcidin Disorders. Scientific World Journal, The, 2011, 11, 1357-1366.	2.1	24
50	Inherited disorders of iron metabolism. Current Opinion in Pediatrics, 2011, 23, 14-20.	2.0	46
51	TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood, 2011, 118, 4459-4462.	1.4	97
52	Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum hepcidin concentrations. Journal of Medical Genetics, 2011, 48, 629-634.	3.2	84
53	Iron and erythropoiesis: a dual relationship. International Journal of Hematology, 2011, 93, 21-26.	1.6	24
54	A time course of hepcidin response to iron challenge in patients with HFE and TFR2 hemochromatosis. Haematologica, 2011, 96, 500-506.	3.5	70

#	Article	IF	CITATIONS
55	Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-α and Tfr2-β isoforms in different tissues. Blood, 2010, 115, 3382-3389.	1.4	66
56	Increased susceptibility to iron deficiency of Tmprss6-haploinsufficient mice. Blood, 2010, 116, 851-852.	1.4	25
57	Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood, 2010, 116, 5357-5367.	1.4	121
58	Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica, 2010, 95, 1814-1822.	3.5	251
59	Recent advances in iron metabolism and related disorders. Internal and Emergency Medicine, 2010, 5, 393-400.	2.0	25
60	Novel TMPRSS6 mutations associated with iron-refractory iron deficiency anemia (IRIDA). Human Mutation, 2010, 31, E1390-E1405.	2.5	56
61	Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. Journal of Clinical Investigation, 2010, 120, 1749-1761.	8.2	202
62	High resolution melting for the identification of mutations in the iron responsive element of the ferritin light chain gene. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1415-1418.	2.3	7
63	Two to Tango: Regulation of Mammalian Iron Metabolism. Cell, 2010, 142, 24-38.	28.9	1,692
64	Rare Types of Genetic Hemochromatosis. Acta Haematologica, 2009, 122, 140-145.	1.4	27
65	BMP6 orchestrates iron metabolism. Nature Genetics, 2009, 41, 386-388.	21.4	48
66	Hereditary Sideroblastic Anemias: Pathophysiology, Diagnosis, and Treatment. Seminars in Hematology, 2009, 46, 371-377.	3.4	81
67	Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia. Blood, 2009, 113, 5605-5608.	1.4	110
68	Recent advances in the understanding of inherited sideroblastic anaemia. British Journal of Haematology, 2008, 143, 27-38.	2.5	68
69	A potential pathogenetic role of iron in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2008, 12, 1548-1550.	3.6	134
70	The Serine Protease Matriptase-2 (TMPRSS6) Inhibits Hepcidin Activation by Cleaving Membrane Hemojuvelin. Cell Metabolism, 2008, 8, 502-511.	16.2	494
71	Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. Haematologica, 2008, 93, 741-752.	3.5	182
72	Hemojuvelin N-terminal mutants reach the plasma membrane but do not activate the hepcidin response. Haematologica, 2008, 93, 1466-1472.	3.5	28

#	Article	IF	CITATIONS
73	Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood, 2008, 111, 924-931.	1.4	277
74	Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood, 2007, 109, 4503-4510.	1.4	78
75	The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood, 2007, 110, 1353-1358.	1.4	287
76	Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis. Blood, 2007, 110, 4096-4100.	1.4	139
77	Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood, 2006, 107, 349-354.	1.4	137
78	Hepcidin is decreased in TFR2 hemochromatosis. Blood, 2005, 105, 1803-1806.	1.4	368
79	DMT1 mutations: mice and humans are not alike. Blood, 2005, 105, 916-917.	1.4	4
80	Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood, 2005, 106, 3710-3717.	1.4	180
81	Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nature Genetics, 2003, 33, 21-22.	21.4	802
82	New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood, 2001, 97, 2555-2560.	1.4	232
83	The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nature Genetics, 2000, 25, 14-15.	21.4	751