Ulrika Marklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7863645/publications.pdf Version: 2024-02-01

Πιρικλ Μλρκιτινη

#	Article	IF	CITATIONS
1	Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nature Neuroscience, 2021, 24, 34-46.	14.8	151
2	Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. Journal of Clinical Investigation, 2021, 131, .	8.2	24
3	Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson's disease. Stem Cell Reports, 2021, 16, 2718-2735.	4.8	18
4	Diversity, development and immunoregulation of enteric neurons. Nature Reviews Gastroenterology and Hepatology, 2021, , .	17.8	4
5	Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Frontiers in Molecular Neuroscience, 2019, 12, 6.	2.9	65
6	Transcription and Signaling Regulators in Developing Neuronal Subtypes of Mouse and Human Enteric Nervous System. Gastroenterology, 2018, 154, 624-636.	1.3	76
7	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	6.0	28
8	Molecular Architecture of the Mouse Nervous System. Cell, 2018, 174, 999-1014.e22.	28.9	2,002
9	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	12.6	251
10	Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. Journal of Neuroscience, 2016, 36, 4339-4350.	3.6	35
11	Detailed Expression Analysis of Regulatory Genes in the Early Developing Human Neural Tube. Stem Cells and Development, 2014, 23, 5-15.	2.1	34
12	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	12.6	181
13	Control of Notch-ligand endocytosis by ligand-receptor interaction. Journal of Cell Science, 2010, 123, 2931-2942.	2.0	66
14	Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression. Development (Cambridge), 2010, 137, 437-445.	2.5	57
15	A homeodomain feedback circuit underlies step-function interpretation of a Shh morphogen gradient during ventral neural patterning. Development (Cambridge), 2010, 137, 4051-4060.	2.5	71
16	Control of Notch-ligand endocytosis by ligand-receptor interaction. Development (Cambridge), 2010, 137, e1-e1.	2.5	0
17	Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7613-7618.	7.1	196
18	Identification of Intrinsic Determinants of Midbrain Dopamine Neurons. Cell, 2006, 124, 393-405.	28.9	549

#	Article	IF	CITATIONS
19	Lmx1b is essential for the development of serotonergic neurons. Nature Neuroscience, 2003, 6, 933-938.	14.8	236