Diane E Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786327/publications.pdf Version: 2024-02-01

DIANE F CDIFFIN

#	Article	IF	CITATIONS
1	Cytokine expression in the brain during the acquired immunodeficiency syndrome. Annals of Neurology, 1992, 31, 349-360.	2.8	596
2	Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature, 1993, 361, 739-742.	13.7	556
3	Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dememtia. Annals of Neurology, 1993, 33, 576-582.	2.8	444
4	Measles Encephalomyelitis — Clinical and Immunologic Studies. New England Journal of Medicine, 1984, 310, 137-141.	13.9	411
5	?-Chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Annals of Neurology, 1998, 44, 831-835.	2.8	330
6	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	6.0	294
7	Measles. Lancet, The, 2012, 379, 153-164.	6.3	288
8	Binding of Sindbis Virus to Cell Surface Heparan Sulfate. Journal of Virology, 1998, 72, 7349-7356.	1.5	257
9	Interferon-gamma -Mediated Site-Specific Clearance of Alphavirus from CNS Neurons. Science, 2001, 293, 303-306.	6.0	236
10	Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathologica, 2016, 131, 159-184.	3.9	223
11	Elevated central nervous system prostaglandins in human immunodeficiency virus?associated dementia. Annals of Neurology, 1994, 35, 592-597.	2.8	221
12	Differential CD4 T Cell Activation in Measles. Journal of Infectious Diseases, 1993, 168, 275-281.	1.9	215
13	Immune responses to RNA-virus infections of the CNS. Nature Reviews Immunology, 2003, 3, 493-502.	10.6	205
14	Infection of Monocytes during Measles. Journal of Infectious Diseases, 1993, 168, 47-52.	1.9	202
15	Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Annals of Neurology, 1999, 46, 391-398.	2.8	197
16	Global measles elimination. Nature Reviews Microbiology, 2006, 4, 900-908.	13.6	195
17	Immune Activation in Measles. New England Journal of Medicine, 1989, 320, 1667-1672.	13.9	181
18	Measles virusâ€induced suppression of immune responses. Immunological Reviews, 2010, 236, 176-189.	2.8	158

#	Article	IF	CITATIONS
19	Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nature Communications, 2017, 8, 14575.	5.8	154
20	A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nature Medicine, 2003, 9, 1209-1213.	15.2	149
21	Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatric Infectious Disease Journal, 1987, 6, 451-453.	1.1	147
22	ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1666-1671.	3.3	147
23	In vitro evidence for a dual role of tumor necrosis factor-? in human immunodeficiency virus type 1 encephalopathy. Annals of Neurology, 1995, 37, 381-394.	2.8	144
24	Production of atypical measles in rhesus macaques: Evidence for disease mediated by immune complex formation and eosinophils in the presence of fusion-inhibiting antibody. Nature Medicine, 1999, 5, 629-634.	15.2	141
25	Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs. Journal of Virology, 2014, 88, 8065-8076.	1.5	124
26	Successful DNA immunization against measles: Neutralizing antibody against either the hemagglutinin or fusion glycoprotein protects rhesus macaques without evidence of atypical measles. Nature Medicine, 2000, 6, 776-781.	15.2	117
27	The role of antibody in recovery from alphavirus encephalitis. Immunological Reviews, 1997, 159, 155-161.	2.8	114
28	SPECIFICITY OF THE INFLAMMATORY RESPONSE IN VIRAL ENCEPHALITIS. Journal of Experimental Medicine, 1972, 136, 216-226.	4.2	109
29	The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses, 2016, 8, 282.	1.5	105
30	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
31	Role of CD8 + Lymphocytes in Control and Clearance of Measles Virus Infection of Rhesus Monkeys. Journal of Virology, 2003, 77, 4396-4400.	1.5	103
32	REGULATORS OF APOPTOSIS ON THE ROAD TO PERSISTENT ALPHAVIRUS INFECTION. Annual Review of Microbiology, 1997, 51, 565-592.	2.9	102
33	Measles virus, immune control, and persistence. FEMS Microbiology Reviews, 2012, 36, 649-662.	3.9	100
34	Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14989-14994.	3.3	99
35	ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10457-E10466.	3.3	99
36	Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2987-2992.	3.3	92

#	Article	lF	CITATIONS
37	Functional Characterization of the Alphavirus TF Protein. Journal of Virology, 2013, 87, 8511-8523.	1.5	90
38	Role of the Immune Response in Age-Dependent Resistance of Mice to Encephalitis Due to Sindbis Virus. Journal of Infectious Diseases, 1976, 133, 456-464.	1.9	89
39	The Role of CD8+ T Cells and Major Histocompatibility Complex Class I Expression in the Central Nervous System of Mice Infected with Neurovirulent Sindbis Virus. Journal of Virology, 2000, 74, 6117-6125.	1.5	88
40	Sindbis Virus-Induced Neuronal Death Is both Necrotic and Apoptotic and Is Ameliorated by N -Methyl- d -Aspartate Receptor Antagonists. Journal of Virology, 2001, 75, 7114-7121.	1.5	88
41	Differential Regulation of Interleukin (IL)–4, ILâ€5, and ILâ€10 during Measles in Zambian Children. Journal of Infectious Diseases, 2002, 186, 879-887.	1.9	87
42	Gamma Interferon-Dependent, Noncytolytic Clearance of Sindbis Virus Infection from Neurons In Vitro. Journal of Virology, 2005, 79, 5374-5385.	1.5	86
43	Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clinical Immunology and Immunopathology, 1991, 61, 236-248.	2.1	83
44	Suppression of Human Immunodeficiency Virus Replication during Acute Measles. Journal of Infectious Diseases, 2002, 185, 1035-1042.	1.9	83
45	Age Dependence of Viral Expression: Comparative Pathogenesis of Two Rodent-Adapted Strains of Measles Virus in Mice. Infection and Immunity, 1974, 9, 690-695.	1.0	81
46	The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology, 2009, 388, 305-314.	1.1	80
47	Measles Vaccine. Viral Immunology, 2018, 31, 86-95.	0.6	80
48	Within host RNA virus persistence: mechanisms and consequences. Current Opinion in Virology, 2017, 23, 35-42.	2.6	79
49	Modulation of disease, T cell responses, and measles virus clearance in monkeys vaccinated with H-encoding alphavirus replicon particles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11581-11588.	3.3	77
50	Synergistic Roles of Antibody and Interferon in Noncytolytic Clearance of Sindbis Virus from Different Regions of the Central Nervous System. Journal of Virology, 2007, 81, 5628-5636.	1.5	75
51	Prospective Study of Measles in Hospitalized, Human Immunodeficiency Virus (HIV)–Infected and HIV–Uninfected Children in Zambia. Clinical Infectious Diseases, 2002, 35, 189-196.	2.9	74
52	Limited Contribution of Humoral Immunity to the Clearance of Measles Viremia in Rhesus Monkeys. Journal of Infectious Diseases, 2004, 190, 998-1005.	1.9	72
53	Noncytolytic Clearance of Sindbis Virus Infection from Neurons by Gamma Interferon Is Dependent on Jak/Stat Signaling. Journal of Virology, 2009, 83, 3429-3435.	1.5	72
54	Slow clearance of measles virus RNA after acute infection. Journal of Clinical Virology, 2007, 39, 312-317.	1.6	69

#	Article	IF	CITATIONS
55	Differences between C57BL/6 and BALB/cBy Mice in Mortality and Virus Replication after Intranasal Infection with Neuroadapted Sindbis Virus. Journal of Virology, 2000, 74, 6156-6161.	1.5	68
56	Emergence and re-emergence of viral diseases of the central nervous system. Progress in Neurobiology, 2010, 91, 95-101.	2.8	68
57	Glutamate receptor antagonists protect from virus-induced neural degeneration. Annals of Neurology, 2004, 55, 541-549.	2.8	66
58	Alphavirus-Induced Encephalomyelitis: Antibody-Secreting Cells and Viral Clearance from the Nervous System. Journal of Virology, 2011, 85, 11490-11501.	1.5	64
59	Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. Journal of Neuroimmunology, 2002, 127, 106-114.	1.1	63
60	Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16053-16058.	3.3	63
61	Recruitment and Retention of B Cells in the Central Nervous System in Response to Alphavirus Encephalomyelitis. Journal of Virology, 2013, 87, 2420-2429.	1.5	62
62	HIVâ€l Infection in Zambian Children Impairs the Development and Avidity Maturation of Measles Virus–Specific Immunoglobulin G after Vaccination and Infection. Journal of Infectious Diseases, 2009, 200, 1031-1038.	1.9	60
63	Control of Sindbis Virus Infection by Antibody in Interferon-Deficient Mice. Journal of Virology, 2000, 74, 3905-3908.	1.5	59
64	Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunologic Research, 2010, 47, 123-133.	1.3	59
65	Activation of Divergent Neuronal Cell Death Pathways in Different Target Cell Populations during Neuroadapted Sindbis Virus Infection of Mice. Journal of Virology, 2000, 74, 5352-5356.	1.5	58
66	Gene Expression Changes in Peripheral Blood Mononuclear Cells during Measles Virus Infection. Vaccine Journal, 2007, 14, 918-923.	3.2	58
67	Characterization of an In Vitro Model of Alphavirus Infection of Immature and Mature Neurons. Journal of Virology, 2005, 79, 3438-3447.	1.5	54
68	HIV Type 1 Infection Is a Risk Factor for Mortality in Hospitalized Zambian Children with Measles. Clinical Infectious Diseases, 2008, 46, 523-527.	2.9	54
69	The effects of alphavirus infection on neurons. Annals of Neurology, 1994, 35, S23-S27.	2.8	53
70	Spontaneous proliferation of peripheral mononuclear cells in natural measles virus infection: Identification of dividing cells and correlation with mitogen responsiveness. Clinical Immunology and Immunopathology, 1990, 55, 315-326.	2.1	52
71	Persistence of alphaviruses in vertebrate hosts. Trends in Microbiology, 1994, 2, 25-28.	3.5	51
72	Why does viral RNA sometimes persist after recovery from acute infections?. PLoS Biology, 2022, 20, e3001687.	2.6	51

#	Article	IF	CITATIONS
73	Peripheral blood mononuclear cells during natural measles virus infection: Cell surface phenotypes and evidence for activation. Clinical Immunology and Immunopathology, 1986, 40, 305-312.	2.1	49
74	Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology, 2003, 311, 28-39.	1.1	48
75	Measles virus and the nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 123, 577-590.	1.0	48
76	Macrodomain ADP-ribosylhydrolase and the pathogenesis of infectious diseases. PLoS Pathogens, 2018, 14, e1006864.	2.1	48
77	A Chimeric Alphavirus Replicon Particle Vaccine Expressing the Hemagglutinin and Fusion Proteins Protects Juvenile and Infant Rhesus Macaques from Measles. Journal of Virology, 2010, 84, 3798-3807.	1.5	47
78	Clearance of virus infection from the CNS. Current Opinion in Virology, 2011, 1, 216-221.	2.6	47
79	Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3575-3580.	3.3	46
80	Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
81	Functional and Phenotypic Changes in Circulating Lymphocytes from Hospitalized Zambian Children with Measles. Vaccine Journal, 2002, 9, 994-1003.	3.2	44
82	Both ADP-Ribosyl-Binding and Hydrolase Activities of the Alphavirus nsP3 Macrodomain Affect Neurovirulence in Mice. MBio, 2020, 11, .	1.8	43
83	Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance. Scientific Reports, 2017, 7, 11474.	1.6	39
84	Differentiation of Neurons Restricts Arbovirus Replication and Increases Expression of the Alpha Isoform of IRF-7. Journal of Virology, 2015, 89, 48-60.	1.5	38
85	Measles Virus Neutralizing Antibody Response, Cell-Mediated Immunity, and Immunoglobulin G Antibody Avidity Before and After Receipt of a Third Dose of Measles, Mumps, and Rubella Vaccine in Young Adults. Journal of Infectious Diseases, 2016, 213, 1115-1123.	1.9	38
86	Role of N-Linked Glycosylation for Sindbis Virus Infection and Replication in Vertebrate and Invertebrate Systems. Journal of Virology, 2009, 83, 5640-5647.	1.5	37
87	Spastic paraparesis and HTLV-I infection in peru. Annals of Neurology, 1988, 23, S151-S155.	2.8	35
88	Rapid Activation of Poly(ADP-ribose) Polymerase Contributes to Sindbis Virus and Staurosporine-Induced Apoptotic Cell Death. Virology, 2002, 293, 164-171.	1.1	35
89	Use of Vaxfectin Adjuvant with DNA Vaccine Encoding the Measles Virus Hemagglutinin and Fusion Proteins Protects Juvenile and Infant Rhesus Macaques against Measles Virus. Vaccine Journal, 2008, 15, 1214-1221.	3.2	35
90	Hemagglutinin Protein Is a Primary Target of the Measles Virus–Specific HLAâ€A2–Restricted CD8+T Cell Response during Measles and after Vaccination. Journal of Infectious Diseases, 2007, 195, 1799-1807.	1.9	34

#	Article	lF	CITATIONS
91	Vaccine-Induced Measles Virus-Specific T Cells Do Not Prevent Infection or Disease but Facilitate Subsequent Clearance of Viral RNA. MBio, 2014, 5, e01047.	1.8	34
92	Increased Thymic Output during Acute Measles Virus Infection. Journal of Virology, 2003, 77, 7872-7879.	1.5	33
93	Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. Journal of General Virology, 2016, 97, 2908-2925.	1.3	33
94	In Vitro Suppression of Human Immunodeficiency Virus Type 1 Replication by Measles Virus. Journal of Virology, 2005, 79, 9197-9205.	1.5	31
95	Protective Effects of Glutamine Antagonist 6-Diazo-5-Oxo- <scp>l</scp> -Norleucine in Mice with Alphavirus Encephalomyelitis. Journal of Virology, 2016, 90, 9251-9262.	1.5	31
96	Immune Containment and Consequences of Measles Virus Infection in Healthy and Immunocompromised Individuals. Vaccine Journal, 2006, 13, 437-443.	3.2	30
97	Measles virus persistence and its consequences. Current Opinion in Virology, 2020, 41, 46-51.	2.6	30
98	Virus specificity and isotype expression of intraparenchymal antibody-secreting cells during Sindbis virus encephalitis in mice. Journal of Neuroimmunology, 1993, 48, 37-44.	1.1	29
99	Interaction of Sindbis virus non-structural protein 3 with poly(ADP-ribose) polymerase 1 in neuronal cells. Journal of General Virology, 2009, 90, 2073-2080.	1.3	29
100	The cerebrospinal fluid in visna, a slow viral disease of sheep. Annals of Neurology, 1978, 4, 212-218.	2.8	28
101	Development and characterization of Sindbis virus with encoded fluorescent RNA aptamer Spinach2 for imaging of replication and immune-mediated changes in intracellular viral RNA. Journal of General Virology, 2017, 98, 992-1003.	1.3	28
102	Heparin-binding and patterns of virulence for two recombinant strains of Sindbis virus. Virology, 2006, 347, 183-190.	1.1	27
103	Dose-Dependent Protection against or Exacerbation of Disease by a Polylactide Clycolide Microparticle-Adsorbed, Alphavirus-Based Measles Virus DNA Vaccine in Rhesus Macaques. Vaccine Journal, 2008, 15, 697-706.	3.2	26
104	Induction of Dendritic Cell Production of Type I and Type III Interferons by Wild-Type and Vaccine Strains of Measles Virus: Role of Defective Interfering RNAs. Journal of Virology, 2013, 87, 7816-7827.	1.5	26
105	Mice Deficient in Interferon-Gamma or Interferon-Gamma Receptor 1 Have Distinct Inflammatory Responses to Acute Viral Encephalomyelitis. PLoS ONE, 2013, 8, e76412.	1.1	26
106	Viral Encephalomyelitis. PLoS Pathogens, 2011, 7, e1002004.	2.1	25
107	Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine. Journal of NeuroVirology, 2015, 21, 159-173.	1.0	25
108	Biologic response (antiviral) to recombinant human interferon alpha 2a as a aunction of dose and route of administration in healthy volunteers. Clinical Pharmacology and Therapeutics, 1987, 42, 567-575.	2.3	24

#	Article	IF	CITATIONS
109	Current progress in pulmonary delivery of measles vaccine. Expert Review of Vaccines, 2014, 13, 751-759.	2.0	24
110	Distinct Immune Responses in Resistant and Susceptible Strains of Mice during Neurovirulent Alphavirus Encephalomyelitis. Journal of Virology, 2015, 89, 8280-8291.	1.5	24
111	A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Science Translational Medicine, 2020, 12, .	5.8	23
112	T cell-derived interleukin-10 is an important regulator of the Th17 response during lethal alphavirus encephalomyelitis. Journal of Neuroimmunology, 2016, 295-296, 60-67.	1.1	22
113	Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques. JCI Insight, 2020, 5, .	2.3	22
114	NF-κB Activation Promotes Alphavirus Replication in Mature Neurons. Journal of Virology, 2019, 93, .	1.5	21
115	The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses. Pathogens, 2022, 11, 94.	1.2	21
116	Genetic Control of Neuroadapted Sindbis Virus Replication in Female Mice Maps to Chromosome 2 and Associates with Paralysis and Mortality. Journal of Virology, 2001, 75, 8674-8680.	1.5	20
117	Limited <i>In Vivo</i> Production of Type I or Type III Interferon After Infection of Macaques with Vaccine or Wild-Type Strains of Measles Virus. Journal of Interferon and Cytokine Research, 2015, 35, 292-301.	0.5	20
118	Interleukin-10 Modulation of Virus Clearance and Disease in Mice with Alphaviral Encephalomyelitis. Journal of Virology, 2018, 92, .	1.5	20
119	Altered Virulence of Vaccine Strains of Measles Virus after Prolonged Replication in Human Tissue. Journal of Virology, 1999, 73, 8791-8797.	1.5	20
120	Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage. Neurotherapeutics, 2016, 13, 455-460.	2.1	19
121	Germ Line IgM Is Sufficient, but Not Required, for Antibody-Mediated Alphavirus Clearance from the Central Nervous System. Journal of Virology, 2018, 92, .	1.5	19
122	Understanding the causes and consequences of measles virus persistence. F1000Research, 2018, 7, 237.	0.8	19
123	Measles immunity and immunosuppression. Current Opinion in Virology, 2021, 46, 9-14.	2.6	19
124	Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. Journal of General Virology, 2019, 100, 46-62.	1.3	19
125	Measles virus inhibits human immunodeficiency virus type 1 reverse transcription and replication by blocking cell-cycle progression of CD4+ T lymphocytes. Journal of General Virology, 2008, 89, 984-993.	1.3	18
126	Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis. Virology, 2017, 508, 134-149.	1.1	18

#	Article	IF	CITATIONS
127	Human Schwann cells are susceptible to infection with Zika and yellow fever viruses, but not dengue virus. Scientific Reports, 2019, 9, 9951.	1.6	18
128	Vaxfectin Adjuvant Improves Antibody Responses of Juvenile Rhesus Macaques to a DNA Vaccine Encoding the Measles Virus Hemagglutinin and Fusion Proteins. Journal of Virology, 2013, 87, 6560-6568.	1.5	17
129	Interferon-Gamma Modulation of the Local T Cell Response to Alphavirus Encephalomyelitis. Viruses, 2020, 12, 113.	1.5	17
130	Primary differentiated respiratory epithelial cells respond to apical measles virus infection by shedding multinucleated giant cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
131	Plasma cytokines and chemokines in Zambian children with measles: innate responses and association with HIV-1 co-infection and in-hospital mortality. Journal of Infectious Diseases, 2017, 215, jix012.	1.9	15
132	A Rewarding Career Unraveling the Pathogenesis of Viral Infections. Annual Review of Virology, 2020, 7, 1-14.	3.0	14
133	The NF-κB/leukemia inhibitory factor/STAT3 signaling pathway in antibody-mediated suppression of Sindbis virus replication in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29035-29045.	3.3	13
134	Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathogens, 2018, 14, e1007493.	2.1	11
135	Immature CD4+CD8+ Thymocytes Are Preferentially Infected by Measles Virus in Human Thymic Organ Cultures. PLoS ONE, 2012, 7, e45999.	1.1	10
136	2018 international meeting of the Global Virus Network. Antiviral Research, 2019, 163, 140-148.	1.9	9
137	Activation of Divergent Neuronal Cell Death Pathways in Different Target Cell Populations during Neuroadapted Sindbis Virus Infection of Mice. Journal of Virology, 2000, 74, 5352-5356.	1.5	9
138	The chasm between public health and reproductive research: what history tells us about Zika virus. Journal of Assisted Reproduction and Genetics, 2016, 33, 439-440.	1.2	8
139	Are T cells helpful for COVID-19: the relationship between response and risk. Journal of Clinical Investigation, 2020, 130, 6222-6224.	3.9	8
140	Death and gastrointestinal bleeding complicate encephalomyelitis in mice with delayed appearance of CNS IgM after intranasal alphavirus infection. Journal of General Virology, 2018, 99, 309-320.	1.3	7
141	Visualization of cell-type dependent effects of anti-E2 antibody and interferon-gamma treatments on localization and expression of Broccoli aptamer-tagged alphavirus RNAs. Scientific Reports, 2020, 10, 5259.	1.6	6
142	Development of encoded Broccoli RNA aptamers for live cell imaging of alphavirus genomic and subgenomic RNAs. Scientific Reports, 2020, 10, 5233.	1.6	6
143	Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System. Viruses, 2020, 12, 988.	1.5	5
144	Why are neurons susceptible to Zika virus?. Science, 2017, 357, 33-34.	6.0	4

#	Article	IF	CITATIONS
145	Continued Virus-Specific Antibody-Secreting Cell Production, Avidity Maturation and B Cell Evolution in Patients Hospitalized with COVID-19. Viral Immunology, 2022, 35, 259-272.	0.6	4
146	CSF changes during acute meningoencephalitis in mice caused by encephalomyocarditis virus. Annals of Neurology, 1981, 10, 55-57.	2.8	3
147	Neurotropic Alphaviruses. , 2016, , 175-204.		2
148	B-Cell Responses in Hospitalized Severe Acute Respiratory Syndrome Coronavirus 2–Infected Children With and Without Multisystem Inflammatory Syndrome. Journal of Infectious Diseases, 2022, 226, 822-832.	1.9	2
149	US–Japan Cooperative Medical Sciences Program's Virtual Workshop on COVID-19. Emerging Infectious Diseases, 2021, 27, .	2.0	1
150	Host responses in central nervous system infection. , 2002, , 1651-1659.		0
151	Neurotropic alphaviruses. , 2008, , 94-119.		0
152	Dedication to Dr. Richard T. Johnson. Neurotherapeutics, 2016, 13, 451-452.	2.1	0
153	Editorial overview: Viral pathogenesis: New technologies to advance research in human viral pathogenesis. Current Opinion in Virology, 2018, 29, v-vii.	2.6	0
154	Preparation of Recombinant Alphaviruses for Functional Studies of ADP-Ribosylation. Methods in Molecular Biology, 2018, 1813, 297-316.	0.4	0
155	Control of Alphavirus Replication in Neurons. Proceedings (mdpi), 2020, 50, .	0.2	0

156 Immune Responses to Viruses in the CNS. , 2016, , 332-341.

0