
Philippe S Serp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7862745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Catalytic Properties of Pd/CNT Catalysts for 4â€Nitrophenol Reduction. ChemCatChem, 2022, 14, .	3.7	11
2	Epsilon Cobalt Nanoparticles as Highly Performant Catalysts in Cinnamaldehyde Selective Hydrogenation. ACS Applied Nano Materials, 2022, 5, 5498-5507.	5.0	5
3	Process intensification of the catalytic hydrogenation of squalene using a Pd/CNT catalyst combining nanoparticles and single atoms in a continuous flow reactor. Chemical Engineering Journal, 2022, 441, 135951.	12.7	15
4	Graphitic carbon nitride/few-layer graphene heterostructures for enhanced visible-LED photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 25555-25570.	7.1	9
5	Cobalt catalysts on carbon-based materials for Fischer-Tropsch synthesis: a review. Applied Catalysis A: General, 2021, 609, 117906.	4.3	48
6	Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 984-999.	4.1	30
7	Stabilization of Metal Single Atoms on Carbon and TiO ₂ Supports for CO ₂ Hydrogenation: The Importance of Regulating Charge Transfer. Advanced Materials Interfaces, 2021, 8, 2001777.	3.7	26
8	Photocatalytic and biocidal activities of ZnTiO2 oxynitride heterojunction with MOF-5 and g-C3N4: A case study for textile wastewater treatment under direct sunlight. Journal of Hazardous Materials, 2021, 410, 124562.	12.4	36
9	Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004.	5.6	29
10	Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. Jacs Au, 2021, 1, 187-200.	7.9	12
11	Beyond confinement effects in Fischer-Tropsch Co/CNT catalysts. Journal of Catalysis, 2021, 397, 156-171.	6.2	17
12	Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction. Journal of Catalysis, 2021, 398, 14-28.	6.2	43
13	Potential applicability of Zn0.05TiOxNy@MOF-5 nanocomposite for adsorption and electrochemical detection of Zn(II) in saline wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 106186.	6.7	15
14	Computational Design of Pd Nanoclusters and Pd Single-Atom Catalysts Supported on O-Functionalized Graphene. ACS Applied Nano Materials, 2021, 4, 12235-12249.	5.0	9
15	Selective hydrogenation of cinnamaldehyde by unsupported and few layer graphene supported platinum concave nanocubes exposing {110} facets stabilized by a long-chain amine. Catalysis Today, 2020, 357, 166-175.	4.4	10
16	N-doped carbon nanotubes grown on red mud residue: Hybrid nanocomposites for technological applications. Catalysis Today, 2020, 344, 247-258.	4.4	12
17	Carbon nanotubes as catalysts for wet peroxide oxidation: The effect of surface chemistry. Catalysis Today, 2020, 357, 332-340.	4.4	18
18	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	47.7	436

#	Article	IF	CITATIONS
19	Recent advances in the methanol carbonylation reaction into acetic acid. Coordination Chemistry Reviews, 2020, 402, 213078.	18.8	102
20	Janus amphiphilic carbon nanotubes as Pickering interfacial catalysts for the treatment of oily wastewater by selective oxidation with hydrogen peroxide. Catalysis Today, 2020, 356, 205-215.	4.4	27
21	Preparation characterization and non-isothermal decomposition kinetics of different carbon nitride sheets. Egyptian Journal of Petroleum, 2020, 29, 21-29.	2.6	27
22	Hydrogen Spillover in the Fischerâ€Tropsch Synthesis on Carbonâ€supported Cobalt Catalysts. ChemCatChem, 2020, 12, 1117-1128.	3.7	25
23	2D and 3D Ruthenium Nanoparticle Covalent Assemblies for Phenyl Acetylene Hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020, 4069-4082.	2.0	2
24	Catalysis to discriminate single atoms from subnanometric ruthenium particles in ultra-high loading catalysts. Catalysis Science and Technology, 2020, 10, 4673-4683.	4.1	18
25	Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts. Dalton Transactions, 2020, 49, 10250-10260.	3.3	13
26	Preparation of solar-enhanced AlZnO@carbon nano-substrates for remediation of textile wastewaters. Journal of Environmental Sciences, 2020, 92, 52-68.	6.1	17
27	3D Ruthenium Nanoparticle Covalent Assemblies from Polymantane Ligands for Confined Catalysis. Chemistry of Materials, 2020, 32, 2365-2378.	6.7	11
28	Covalent Assemblies of Metal Nanoparticles—Strategies for Synthesis and Catalytic Applications. Molecular Catalysis, 2020, , 129-197.	1.3	0
29	Alloyed Pt ₃ M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction. Beilstein Journal of Nanotechnology, 2019, 10, 1251-1269.	2.8	6
30	Preparation of Few-Layer Graphene/Carbon Nanotube Hybrids Using Oxide Spinel Catalysts. Journal of Carbon Research, 2019, 5, 28.	2.7	2
31	Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene. Journal of Catalysis, 2019, 372, 226-244.	6.2	29
32	Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations. European Journal of Inorganic Chemistry, 2019, 2019, 1979-1987.	2.0	13
33	Surface coordination chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. Advances in Organometallic Chemistry, 2019, 71, 53-174.	1.0	33
34	Chemoselective reduction of quinoline over Rh–C ₆₀ nanocatalysts. Catalysis Science and Technology, 2019, 9, 6884-6898.	4.1	16
35	Synthesis of selected aromatic aldehydes under UV-LED irradiation over a hybrid photocatalyst of carbon nanofibers and zinc oxide. Catalysis Today, 2019, 328, 286-292.	4.4	16
36	Nano-wastes and the Environment: Potential Challenges and Opportunities of Nano-waste		1

Nano-wastes and the Environment: Potential Challenges and Opportunities of Management Paradigm for Greener Nanotechnologies. , 2019, , 2063-2134. Nano-waste 36

#	Article	IF	CITATIONS
37	Sequential catalytic growth of sulfur-doped carbon nanotubes and their use as catalyst support. Catalysis Communications, 2018, 109, 65-70.	3.3	23
38	Radiation induced in-situ cationic polymerization of polystyrene organogel for selective absorption of cholorophenols from petrochemical wastewater. Journal of Environmental Management, 2018, 210, 307-315.	7.8	33
39	A Seedâ€Mediated Approach for the Preparation of Modified Heterogeneous Catalysts. ChemCatChem, 2018, 10, 1614-1619.	3.7	6
40	Coexistence of sulfonic and pyridinic sites on H 2 SO 4 treated N-doped carbon nanotubes. Catalysis Today, 2018, 301, 183-190.	4.4	4
41	Selectivity shifts in hydrogenation of cinnamaldehyde on electron-deficient ruthenium nanoparticles. Comptes Rendus Chimie, 2018, 21, 346-353.	0.5	29
42	Reactivity and structural evolution of urchinâ€like Co nanostructures under controlled environments. Journal of Microscopy, 2018, 269, 168-176.	1.8	6
43	Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Applied Catalysis A: General, 2018, 551, 71-78.	4.3	44
44	Single Atom Catalysts on Carbonâ€Based Materials. ChemCatChem, 2018, 10, 5058-5091.	3.7	148
45	Polyoxotungstate@Carbon Nanocomposites As Oxygen Reduction Reaction (ORR) Electrocatalysts. Langmuir, 2018, 34, 6376-6387.	3.5	41
46	hcp o Nanowires Grown on Metallic Foams as Catalysts for Fischer–Tropsch Synthesis. Angewandte Chemie, 2018, 130, 10739-10743.	2.0	9
47	hcp o Nanowires Grown on Metallic Foams as Catalysts for Fischer–Tropsch Synthesis. Angewandte Chemie - International Edition, 2018, 57, 10579-10583.	13.8	35
48	Versatile magnetic carbon nanotubes for sampling and pre concentration of pesticides in environmental water. Talanta, 2017, 167, 538-543.	5.5	39
49	Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 2017, 19, 3061-3068.	9.0	22
50	N-doped few-layered graphene-polyNi complex nanocomposite with excellent electrochromic properties. Carbon, 2017, 120, 32-43.	10.3	17
51	Copper-based magnetic catalysts for alkyne oxidative homocoupling reactions. Molecular Catalysis, 2017, 438, 143-151.	2.0	9
52	Hexakis [60]Fullerene Adductâ€Mediated Covalent Assembly of Ruthenium Nanoparticles and Their Catalytic Properties. Chemistry - A European Journal, 2017, 23, 13379-13386.	3.3	22
53	Efficient extraction method using magnetic carbon nanotubes to analyze cocaine and benzoylecgonine in breast milk by GC/MS. Bioanalysis, 2017, 9, 1655-1666.	1.5	9
54	Role of Nitrogen Doping on the Performance of Carbon Nanotube Catalysts: A Catalytic Wet Peroxide Oxidation Application. ChemCatChem, 2016, 8, 2068-2078.	3.7	34

#	Article	IF	CITATIONS
55	Enhancement of the hydrogenation activity of a Pd-tridecilamine (TDA) complex by confinement in carbon nanotubes. Microporous and Mesoporous Materials, 2016, 225, 378-384.	4.4	6
56	Carbon Nanotube Nanoreactors for Chemical Transformations. , 2016, , 111-157.		1
57	Controlled and Chemoselective Hydrogenation of Nitrobenzene over Ru@C ₆₀ Catalysts. ACS Catalysis, 2016, 6, 6018-6024.	11.2	95
58	Synthesis and structure of ruthenium-fullerides. RSC Advances, 2016, 6, 69135-69148.	3.6	22
59	Surface properties of amphiphilic carbon nanotubes and study of their applicability as basic catalysts. RSC Advances, 2016, 6, 54293-54298.	3.6	12
60	Confinement effects on the shape and composition of bimetallic nano-objects in carbon nanotubes. Chemical Communications, 2016, 52, 2362-2365.	4.1	4
61	Coordination chemistry on carbon surfaces. Coordination Chemistry Reviews, 2016, 308, 236-345.	18.8	98
62	A strategy for improving peroxidase stability via immobilization on surface modified multi-walled carbon nanotubes. Journal of Chemical Technology and Biotechnology, 2015, 90, 1570-1578.	3.2	29
63	Effect of the Carbon Support on the Catalytic Activity of Rutheniumâ€Magnetite Catalysts for <i>p</i> â€Chloronitrobenzene Hydrogenation. ChemCatChem, 2015, 7, 2971-2978.	3.7	20
64	Isoprene Polymerization on Iron Nanoparticles Confined in Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 17437-17444.	3.3	14
65	Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite. Inorganics, 2015, 3, 178-193.	2.7	17
66	Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Analytica Chimica Acta, 2015, 873, 51-56.	5.4	41
67	Green alcohol oxidation on palladium catalysts supported on amphiphilic hybrid carbon nanotubes. Catalysis Today, 2015, 249, 137-144.	4.4	19
68	Few layer graphene synthesis on transition metal ferrite catalysts. Carbon, 2015, 89, 350-360.	10.3	32
69	Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effect. Journal of Catalysis, 2015, 325, 111-117.	6.2	41
70	Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. Journal of Catalysis, 2015, 331, 172-180.	6.2	91
71	Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures. Nanoscale, 2015, 7, 294-300.	5.6	34
72	Ethylene Polymerization Catalyzed by Pyreneâ€Tagged Iron Complexes: The Positive Effect of Ï€â€Conjugation and Immobilization on Multiwalled Carbon Nanotubes. ChemCatChem, 2014, 6, 1310-1316.	3.7	16

#	Article	IF	CITATIONS
73	Properties of Carbon Nanotubes. , 2014, , 1-49.		3
74	Adsorption on and Reactivity of Carbon Nanotubes and Graphene. World Scientific Series on Carbon Nanoscience, 2014, , 39-183.	0.1	2
75	Reductive Elimination of Anhydrides from Anionic Iodo Acetyl Carboxylato Rhodium Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 326-336.	2.0	16
76	Enhanced ethylene polymerization of Ni(II) complexes supported on carbon nanotubes. Catalysis Today, 2014, 235, 33-40.	4.4	31
77	Beneficial influence of nanocarbon on the aryliminopyridylnickel chloride catalyzed ethylene polymerization. Catalysis Communications, 2014, 43, 227-230.	3.3	37
78	Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. Journal of Catalysis, 2014, 309, 185-198.	6.2	71
79	Seed-mediated synthesis of bimetallic ruthenium–platinum nanoparticles efficient in cinnamaldehyde selective hydrogenation. Dalton Transactions, 2014, 43, 9283-9295.	3.3	22
80	Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Transactions, 2014, 43, 7455.	3.3	37
81	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	6.2	65
82	Conversion of isopropyl alcohol over Ru and Pd loaded N-doped carbon nanotubes. Chinese Journal of Catalysis, 2014, 35, 970-978.	14.0	20
83	Synthesis of Multi-Walled Carbon Nanotubes by Fluidized-Bed Chemical Vapor Deposition over Co/Al ₂ O ₃ . Journal of Chemical Engineering of Japan, 2014, 47, 28-39.	0.6	3
84	Oxidized few layer graphene and graphite as metal-free catalysts for aqueous sulfide oxidation. Journal of Materials Chemistry A, 2013, 1, 9491.	10.3	25
85	Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites. European Polymer Journal, 2013, 49, 3770-3777.	5.4	34
86	Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. Journal of Energy Chemistry, 2013, 22, 296-304.	12.9	33
87	Selective Confinement of Ruthenium Nanoparticles in Silica Nanotubes. European Journal of Inorganic Chemistry, 2013, 2013, 5654-5654.	2.0	0
88	Geomimetic catalysis: From volcanic stones to ultra-selective Fe–Mo/Al2O3–TiO2 catalysts for few-walled carbon nanotube production. Carbon, 2013, 64, 219-224.	10.3	5
89	Confinement of Metal Nanoparticles in Carbon Nanotubes. ChemCatChem, 2013, 5, 3595-3603.	3.7	76
90	Effect of the synthetic strategy on the non-covalent functionalization of multi-walled carbon nanotubes with polymerized ionic liquids. Carbon, 2013, 57, 209-216.	10.3	44

#	Article	IF	CITATIONS
91	Selective Confinement of Ruthenium Nanoparticles in Silica Nanotubes. European Journal of Inorganic Chemistry, 2013, 2013, 5667-5671.	2.0	0
92	Reactivity of Rhodium(I) Complexes Bearing Nitrogen-Containing Ligands toward CH ₃ I: Synthesis and Full Characterization of Neutral <i>cis</i> -[RhX(CO) ₂ (L)] and Acetyl [RhI(μ-I)(COMe)(CO)(L)] ₂ Complexes. Inorganic Chemistry, 2012, 51, 8670-8685.	4.0	13
93	Direct Involvement of the Acetato Ligand in the Reductive Elimination Step of Rhodium-Catalyzed Methanol Carbonylation. Inorganic Chemistry, 2012, 51, 4-6.	4.0	21
94	Graphene-based materials for catalysis. Catalysis Science and Technology, 2012, 2, 54-75.	4.1	882
95	Polyelectrolyteâ€Assisted Noncovalent Functionalization of Carbon Nanotubes with Ordered Selfâ€Assemblies of a Waterâ€Soluble Porphyrin. ChemPhysChem, 2012, 13, 3622-3631.	2.1	10
96	Carbon nanomaterial–ionic liquid hybrids. Carbon, 2012, 50, 4303-4334.	10.3	214
97	Deposition of gold nanoparticles on ZnO and their catalytic activity for hydrogenation applications. Catalysis Communications, 2012, 22, 79-82.	3.3	22
98	Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 2012, 186, 29-34.	4.4	311
99	Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Applied Catalysis A: General, 2012, 421-422, 99-107.	4.3	80
100	Synthesis of Platinum–Ruthenium Nanoparticles under Supercritical CO ₂ and their Confinement in Carbon Nanotubes: Hydrogenation Applications. ChemCatChem, 2012, 4, 118-122.	3.7	41
101	Alkynylisocyanide Gold Mesogens as Precursors of Gold Nanoparticles. Inorganic Chemistry, 2011, 50, 8654-8662.	4.0	25
102	Catalytic activity of gold supported on ZnO tetrapods for the preferential oxidation of carbon monoxide under hydrogen rich conditions. Nanoscale, 2011, 3, 929-932.	5.6	22
103	Influence of particles alloying on the performances of Pt–Ru/CNT catalysts for selective hydrogenation. Journal of Catalysis, 2011, 278, 59-70.	6.2	84
104	Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process. ChemCatChem, 2011, 3, 749-754.	3.7	63
105	Rhodium complexes containing chiral P-donor ligands as catalysts for asymmetric hydrogenation in non conventional media. Catalysis Letters, 2011, 141, 808-816.	2.6	15
106	Hydrogenation of <i>p</i> â€Chloronitrobenzene over Nanostructuredâ€Carbonâ€Supported Ruthenium Catalysts. ChemSusChem, 2011, 4, 950-956.	6.8	52
107	Theoretical and Experimental Studies on the Carbonâ€Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement. Chemistry - A European Journal, 2011, 17, 11467-11477.	3.3	93
108	Inside Cover: Theoretical and Experimental Studies on the Carbon-Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement (Chem. Eur. J. 41/2011). Chemistry - A European Journal, 2011, 17, 11354-11354.	3.3	1

#	Article	IF	CITATIONS
109	Liquidâ€Phase Hydrogenation of Unsaturated Aldehydes: Enhancing Selectivity of Multiwalled Carbon Nanotubeâ€Supported Catalysts by Thermal Activation. ChemCatChem, 2010, 2, 190-197.	3.7	38
110	Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. Journal of Catalysis, 2010, 273, 191-198.	6.2	99
111	Selective Deposition of Gold Nanoparticles on or Inside Carbon Nanotubes and Their Catalytic Activity for Preferential Oxidation of CO. European Journal of Inorganic Chemistry, 2010, 2010, 5096-5102.	2.0	50
112	Multi-walled carbon nanotubes functionalized by carboxylic groups: Activation of TiO2 (anatase) and phosphate olivines (LiMnPO4; LiFePO4) for electrochemical Li-storage. Journal of Power Sources, 2010, 195, 5360-5369.	7.8	68
113	Carbon xerogel supported noble metal catalysts for fine chemical applications. Catalysis Today, 2010, 149, 358-364.	4.4	35
114	Photodeposition of Au and Pt on ZnO and TiO2. Studies in Surface Science and Catalysis, 2010, 175, 629-633.	1.5	6
115	Imidazolium-based ionic liquids immobilized on solid supports: effect on the structure and thermostability. Dalton Transactions, 2010, 39, 7565.	3.3	41
116	Catalysis in Carbon Nanotubes. ChemCatChem, 2010, 2, 41-47.	3.7	288
117	Introduction to Carbon Nanotubes. , 2010, , 47-118.		26
118	CVD Synthesis of Shape and Size Controlled ZnO Nanoparticles for Application as UV Filters. ECS Transactions, 2009, 25, 1177-1183.	0.5	2
119	An original growth mode of MWCNTs on alumina supported iron catalysts. Journal of Catalysis, 2009, 263, 345-358.	6.2	55
120	Synthesis and Structure–Property Correlation in Shapeâ€Controlled ZnO Nanoparticles Prepared by Chemical Vapor Synthesis and their Application in Dye‣ensitized Solar Cells. Advanced Functional Materials, 2009, 19, 875-886.	14.9	67
121	Kinetic modeling study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition. AICHE Journal, 2009, 55, 465-474.	3.6	15
122	Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition. AICHE Journal, 2009, 55, 450-464.	3.6	41
123	An Efficient Strategy to Drive Nanoparticles into Carbon Nanotubes and the Remarkable Effect of Confinement on Their Catalytic Performance. Angewandte Chemie - International Edition, 2009, 48, 2529-2533.	13.8	237
124	Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol=methanol,) Tj ETQq0 0 0	rg BT 8¦Ove	rlo el o410 Tf 50
125	Chemical Vapor Synthesis of Zinc Oxide Nanoparticles: Experimental and Preliminary Modeling Studies. Journal of Physical Chemistry C, 2009, 113, 19845-19852.	3.1	38
126	Improving Purity and Size Control of Iron―and Molybdenum upported Nanoparticles Prepared by	1.3	4

#	Article	IF	CITATIONS
127	MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon, 2008, 46, 1194-1207.	10.3	172
128	Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Materials Research Bulletin, 2008, 43, 958-967.	5.2	143
129	Properties of Membranes Containing Semi-dispersed Carbon Nanotubes. Environmental Engineering Science, 2008, 25, 565-576.	1.6	95
130	Supported ionic liquid phase catalysis on functionalized carbon nanotubes. Chemical Communications, 2008, , 4201.	4.1	76
131	Catalytic Routes Towards Single Wall Carbon Nanotubes. Catalysis Reviews - Science and Engineering, 2007, 49, 341-405.	12.9	72
132	Catalytic Production of Carbon Nanotubes by Fluidizedâ€Bed CVD. Chemical Vapor Deposition, 2007, 13, 447-457.	1.3	76
133	Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterisation. Surface and Coatings Technology, 2007, 201, 9200-9204.	4.8	33
134	Identification of key parameters for the selective growth of single or double wall carbon nanotubes on FeMo/Al2O3 CVD catalysts. Applied Catalysis A: General, 2007, 323, 162-173.	4.3	47
135	A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition. Carbon, 2007, 45, 624-635.	10.3	78
136	Introduction to Carbon Nanotubes. , 2007, , 43-112.		25
137	New efficient Fe2O3 and FeMo supported OMCVD catalysts for single wall carbon nanotubes growth. Catalysis Communications, 2006, 7, 604-609.	3.3	10
138	Synthesis and Theoretical Study of a Series of Dipalladium(I) Complexes Containing the Pd2(μ-CO)2Core. Inorganic Chemistry, 2006, 45, 1935-1944.	4.0	10
139	Promoting Role of [PtI2(CO)]2 in the Iridium-Catalyzed Methanol Carbonylation to Acetic Acid and Its Interaction with Involved Iridium Species. Organometallics, 2006, 25, 5894-5905.	2.3	25
140	Exploiting the surface –OH groups on activated carbons and carbon nanotubes for the immobilization of a Rh complex. Carbon, 2006, 44, 605-608.	10.3	20
141	Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation. Carbon, 2006, 44, 2384-2391.	10.3	105
142	Principles and applications of CVD powder technology. Materials Science and Engineering Reports, 2006, 53, 1-72.	31.8	147
143	Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon, 2006, 44, 2516-2522.	10.3	68
144	Cooperative effect between iridium and platinum in the carbonylation of methanol to acetic acid. Topics in Catalysis, 2006, 40, 83-90.	2.8	8

#	Article	IF	CITATIONS
145	Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2006, 240, 18-22.	6.2	172
146	Analysis of the Synergistic Effect of Carbonylplatinum Complexes on the Iridium-Catalysed Carbonylation of Methanol to Acetic Acid. European Journal of Inorganic Chemistry, 2006, 2006, 1121-1126.	2.0	8
147	Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. Journal of Molecular Catalysis A, 2005, 235, 194-199.	4.8	456
148	CVD from ethylene on cobalt ferrite catalysts: The effect of the support. Carbon, 2005, 43, 2820-2823.	10.3	19
149	Platinum catalysts supported on MWNT for catalytic wet air oxidation of nitrogen containing compounds. Catalysis Today, 2005, 102-103, 101-109.	4.4	84
150	Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Applied Catalysis B: Environmental, 2005, 56, 305-312.	20.2	294
151	Carbon supported platinum catalysts for catalytic wet air oxidation of refractory carboxylic acids. Topics in Catalysis, 2005, 33, 59-68.	2.8	24
152	Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications. Applied Catalysis B: Environmental, 2004, 54, 175-182.	20.2	87
153	Carbon Nanotubes and Nanofibers in Catalysis. ChemInform, 2004, 35, no.	0.0	1
154	Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42, 2807-2813.	10.3	150
155	Introduction to Carbon Nanotubes. , 2004, , 39-98.		6
156	Introduction to Carbon Nanotubes. , 2004, , 39-98.		1
157	Preparation of Rhodium Catalysts Supported on Carbon Nanotubes by a Surface Mediated Organometallic Reaction. European Journal of Inorganic Chemistry, 2003, 2003, 610-617.	2.0	135
158	High purity multiwalled carbon nanotubes under high pressure and high temperature. Carbon, 2003, 41, 2361-2367.	10.3	24
159	Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts. Applied Catalysis A: General, 2003, 243, 357-365.	4.3	39
160	Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process. Chemical Engineering Science, 2003, 58, 4475-4482.	3.8	139
161	Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003, 253, 337-358.	4.3	1,703
162	Isolation and Structural Characterization of Anionic and Neutral Compounds Resulting from the Oxidative Addition of HI or CH3I to [IrI2(CO)2] Inorganic Chemistry, 2003, 42, 5523-5530.	4.0	21

#	Article	IF	CITATIONS
163	Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials. Chemical Reviews, 2002, 102, 3085-3128.	47.7	224
164	Fluidization, Spouting, and Metal–Organic CVD of Platinum Group Metals on Powders. Chemical Vapor Deposition, 2002, 8, 127.	1.3	28
165	Carbon-supported iridium catalysts in the catalytic wet air oxidation of carboxylic acids: kinetics and mechanistic interpretation. Journal of Molecular Catalysis A, 2002, 182-183, 47-60.	4.8	38
166	Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon, 2002, 40, 1799-1807.	10.3	145
167	Controlled-growth of platinum nanoparticles on carbon nanotubes or nanospheres by MOCVD in fluidized bed reactor. European Physical Journal Special Topics, 2002, 12, 29-36.	0.2	8
168	Growth of carbon nanotubes by fluidized bed catalytic chemical vapor deposition. European Physical Journal Special Topics, 2002, 12, 93-98.	0.2	1
169	Novel carbon supported material: highly dispersed platinum particles on carbon nanospheres. Journal of Materials Chemistry, 2001, 11, 1980-1981.	6.7	47
170	A Facile Route to Carbonylhalogenometal Complexes (M = Rh, Ir, Ru, Pt) by Dimethylformamide Decarbonylation. European Journal of Inorganic Chemistry, 2001, 2001, 2327-2336.	2.0	74
171	A New OMCVD Iridium Precursor for Thin Film Deposition. Chemical Vapor Deposition, 2001, 7, 59-62.	1.3	14
172	Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon, 2001, 39, 443-449.	10.3	33
173	A chemical vapour deposition process for the production of carbon nanospheres. Carbon, 2001, 39, 621-626.	10.3	187
174	Silicon Chemical Vapor Deposition (CVD) on microporous powders in a fluidized bed. Powder Technology, 2001, 120, 82-87.	4.2	14
175	Rhodium and palladium complexes from 1,1′ and 1,2 ferrocenylphosphine as bidentate ligands. Versatile coordination. Journal of Organometallic Chemistry, 2000, 613, 77-85.	1.8	33
176	Dimethylformamide as a convenient CO source for the facile preparation of rhodium-, iridium- or ruthenium-chlorocarbonyl complexes directly from RhCl3·3H2O, IrCl3·3H2O or RuCl3·3H2O. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1999, 2, 267-272.	0.1	0
177	Production of vapour-grown carbon fibres: influence of the catalyst precursor and operating conditions. Fuel, 1999, 78, 837-844.	6.4	22
178	Single-step preparation of activated carbon supported platinum catalysts by fluidized bed organometallic chemical vapor deposition. Carbon, 1999, 37, 527-530.	10.3	17
179	Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon, 1999, 37, 1809-1816.	10.3	22
180	MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: Novel process for one-step preparation of noble-metal catalysts. Applied Organometallic Chemistry, 1998, 12, 161-172.	3.5	65

#	Article	IF	CITATIONS
181	Rhodium-catalyzed hydrocarbonylation of acetic acid into higher acids. Journal of Molecular Catalysis A, 1998, 136, 269-278.	4.8	7
182	A microstructural investigation of vapor-grown carbon fibers. Carbon, 1996, 34, 1452-1454.	10.3	24
183	A versatile one-step method for the preparation of highly dispersed metal supported catalysts. Journal of Molecular Catalysis A, 1995, 101, L107-L110.	4.8	21
184	Mechanistic studies of the activation and the decomposition of [Rh2Cl2(CO)4] in organometallic chemical vapour deposition. Journal of Organometallic Chemistry, 1995, 498, 41-47.	1.8	10
185	One-Step Preparation of Highly Dispersed Supported Rhodium Catalysts by Low-Temperature Organometallic Chemical-Vapor-Deposition. Journal of Catalysis, 1995, 157, 294-300.	6.2	31
186	OMCVD on Fluidized Divided Substrates : a Potential Method for the Preparation of Catalysts. European Physical Journal Special Topics, 1995, 05, C5-1037-C5-1043.	0.2	2
187	Surface Reactivity of Transition Metal CVD Precursors: Towards the Control of the Nucleation Step. , 0, , 147-171.		7
188	Exploiting Surface Chemistry to Prepare Metal-Supported Catalysts by Organometallic Chemical Vapor Deposition. , 0, , 347-373.		0