Miles J Padgett

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/786244/miles-j-padgett-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

463 176 34,952 94 h-index g-index citations papers 582 43,480 7.63 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
463	Single-pixel imaging with heralded single photons 2022 , 1, 826		1
462	Quantum imaging with a photon counting camera Scientific Reports, 2022, 12, 8286	4.9	1
461	Noise rejection through an improved quantum illumination protocol. <i>Scientific Reports</i> , 2021 , 11, 21841	4.9	2
460	Optimising backscatter from multiple beam interference. <i>Optics Express</i> , 2021 , 29, 8770-8776	3.3	1
459	Compressed sensing in the far-field of the spatial light modulator in high noise conditions. <i>Scientific Reports</i> , 2021 , 11, 17460	4.9	1
458	Time-of-flight 3D imaging through multimode optical fibers. <i>Science</i> , 2021 , 374, 1395-1399	33.3	8
457	Amplification of waves from a rotating body. <i>Nature Physics</i> , 2020 , 16, 1069-1073	16.2	17
456	How many photons does it take to form an image?. Applied Physics Letters, 2020, 116, 260504	3.4	5
455	Imaging through noise with quantum illumination. Science Advances, 2020, 6, eaay2652	14.3	37
454	Single-pixel imaging using caustic patterns. Scientific Reports, 2020, 10, 2281	4.9	4
453	Revealing and concealing entanglement with noninertial motion. <i>Physical Review A</i> , 2020 , 101,	2.6	5
452	Developing a portable gas imaging camera using highly tunable active-illumination and computer vision. <i>Optics Express</i> , 2020 , 28, 18566-18576	3.3	2
451	Dual-band single-pixel telescope. <i>Optics Express</i> , 2020 , 28, 18180-18188	3.3	10
450	Single-pixel imaging 12 years on: a review. <i>Optics Express</i> , 2020 , 28, 28190-28208	3.3	79
449	Single-pixel LIDAR with Deep Learning Optimised Sampling 2020 ,		2
448	Photon Bunching in a Rotating Reference Frame. <i>Physical Review Letters</i> , 2019 , 123, 110401	7.4	11
447	Imaging with quantum states of light. <i>Nature Reviews Physics</i> , 2019 , 1, 367-380	23.6	78

(2018-2019)

446	A compact acoustic spanner to rotate macroscopic objects. Scientific Reports, 2019, 9, 6757	4.9	2
445	A versatile quantum walk resonator with bright classical light. <i>PLoS ONE</i> , 2019 , 14, e0214891	3.7	12
444	Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR. <i>Scientific Reports</i> , 2019 , 9, 5241	4.9	8
443	Leach et al. Reply. <i>Physical Review Letters</i> , 2019 , 122, 139402	7.4	1
442	Imaging Bell-type nonlocal behavior. <i>Science Advances</i> , 2019 , 5, eaaw2563	14.3	25
441	A High-Speed, Wavelength Invariant, Single-Pixel Wavefront Sensor With a Digital Micromirror Device. <i>IEEE Access</i> , 2019 , 7, 85860-85866	3.5	12
440	Phase and amplitude imaging with quantum correlations through Fourier Ptychography. <i>Scientific Reports</i> , 2019 , 9, 10445	4.9	8
439	Beating classical imaging limits with entangled photons 2019 ,		2
438	Concepts in quantum state tomography and classical implementation with intense light: a tutorial. <i>Advances in Optics and Photonics</i> , 2019 , 11, 67	16.7	51
437	A light-in-flight single-pixel camera for use in the visible and short-wave infrared. <i>Optics Express</i> , 2019 , 27, 9829-9837	3.3	7
436	Resolution-enhanced quantum imaging by centroid estimation of biphotons. <i>Optica</i> , 2019 , 6, 347	8.6	23
435	Measurement of the spin-orbit coupling interaction in ring-core optical fibers. <i>OSA Continuum</i> , 2019 , 2, 2975	1.4	5
434	Exploiting digital micromirror device for holographic micro-endoscopy 2019,		1
433	Deep learning optimized single-pixel LiDAR. <i>Applied Physics Letters</i> , 2019 , 115, 231101	3.4	22
432	Principles and prospects for single-pixel imaging. <i>Nature Photonics</i> , 2019 , 13, 13-20	33.9	232
431	Light, the universe and everything 🛘 2 Herculean tasks for quantum cowboys and black diamond skiers. <i>Journal of Modern Optics</i> , 2018 , 65, 1261-1308	1.1	5
430	Testing for entanglement with periodic coarse graining. <i>Physical Review A</i> , 2018 , 97,	2.6	5
429	II wisted Lectrons. Contemporary Physics, 2018, 59, 126-144	3.3	26

428	Deep learning for real-time single-pixel video. Scientific Reports, 2018, 8, 2369	4.9	106
427	Reversal of orbital angular momentum arising from an extreme Doppler shift. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3800-3803	11.5	18
426	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. <i>Light: Science and Applications</i> , 2018 , 7, 17156	16.7	64
425	More than meets the eye. <i>Gut</i> , 2018 , 67, 69	19.2	3
424	1000 fps computational ghost imaging using LED-based structured illumination. <i>Optics Express</i> , 2018 , 26, 2427-2434	3.3	94
423	Resolution limits of quantum ghost imaging. <i>Optics Express</i> , 2018 , 26, 7528-7536	3.3	29
422	How fast is a twisted photon?. Optica, 2018, 5, 682	8.6	13
421	Quantum-inspired computational imaging. <i>Science</i> , 2018 , 361,	33.3	71
420	Ghost Imaging Using Optical Correlations. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700143	8.3	74
419	Experimental Limits of Ghost Diffraction: Popper's Thought Experiment. Scientific Reports, 2018, 8, 131	84 .9	9
418	Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. <i>Optics Express</i> , 2018 , 26, 25211-25225	3.3	16
4 ¹ 7	Experimental study of quantum thermodynamics using optical vortices. <i>Journal of Physics Communications</i> , 2018 , 2, 035012	1.2	9
416	Approach to classify, separate, and enrich objects in groups using ensemble sorting. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5681-5685	11.5	6
415	Optical orbital angular momentum. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	56
414	Adaptive foveated single-pixel imaging with dynamic supersampling. <i>Science Advances</i> , 2017 , 3, e16017	′82 4.3	122
413	Image reconstruction from photon sparse data. <i>Scientific Reports</i> , 2017 , 7, 42164	4.9	13
412	A Bayesian Approach to Denoising of Single-Photon Binary Images. <i>IEEE Transactions on Computational Imaging</i> , 2017 , 3, 460-471	4.5	11
411	Measuring the orbital angular momentum spectrum of an electron beam. <i>Nature Communications</i> , 2017 , 8, 15536	17.4	51

(2016-2017)

410	Free-space propagation of high-dimensional structured optical fields in an urban environment. <i>Science Advances</i> , 2017 , 3, e1700552	14.3	86
409	Sharing a Common Origin Between the Rotational and Linear Doppler Effects. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700183	8.3	52
408	A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. <i>Scientific Reports</i> , 2017 , 7, 3464	4.9	117
407	Generation of Caustics and Rogue Waves from Nonlinear Instability. <i>Physical Review Letters</i> , 2017 , 119, 203901	7.4	22
406	An introduction to ghost imaging: quantum and classical. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	99
405	Roadmap on structured light. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 013001	1.7	518
404	Orbital angular momentum 25 years on [Invited]. Optics Express, 2017, 25, 11265-11274	3.3	356
403	Sub-shot-noise shadow sensing with quantum correlations. <i>Optics Express</i> , 2017 , 25, 21826-21840	3.3	11
402	Polarisation structuring of broadband light. <i>Optics Express</i> , 2017 , 25, 25079-25089	3.3	19
401	Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. <i>Optics Express</i> , 2017 , 25, 29874-29884	3.3	53
400	Compressed sensing with near-field THz radiation. <i>Optica</i> , 2017 , 4, 989	8.6	82
399	Real-time imaging of methane gas leaks using a single-pixel camera. <i>Optics Express</i> , 2017 , 25, 2998-300	5 3.3	111
398	Real-time computational photon-counting LiDAR. Optical Engineering, 2017, 57, 1	1.1	11
397	Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging. <i>Biomedical Optics Express</i> , 2016 , 7, 2993-3006	3.5	29
396	DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples. <i>Optics Express</i> , 2016 , 24, 12701-12	3.3	25
395	Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera 2016 ,		6
394	Coherent Absorption of N00N States. <i>Physical Review Letters</i> , 2016 , 117, 023601	7.4	25
393	Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. <i>Science Advances</i> , 2016 , 2, e1600190	14.3	217

392	Single-pixel three-dimensional imaging with time-based depth resolution. <i>Nature Communications</i> , 2016 , 7, 12010	17.4	261
391	Non-diffractive computational ghost imaging. <i>Optics Express</i> , 2016 , 24, 14172-82	3.3	22
390	On the natures of the spin and orbital parts of optical angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 064004	1.7	78
389	Fast Compressive 3D Single-pixel Imaging 2016 ,		1
388	First-Photon 3D Imaging with a Single-Pixel Camera 2016 ,		1
387	Long Distance Free-Space Propagation of light carrying Orbital Angular Momentum 2016 ,		1
386	Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells. <i>Optics Express</i> , 2016 , 24, 27009-27015	3.3	4
385	Comparing the information capacity of Laguerre-Gaussian and Hermite-Gaussian modal sets in a finite-aperture system. <i>Optics Express</i> , 2016 , 24, 27127-27136	3.3	28
384	High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. <i>Optics Express</i> , 2016 , 24, 29269-29282	3.3	65
383	Heralded phase-contrast imaging using an orbital angular momentum phase-filter. <i>Journal of Optics</i> (United Kingdom), 2016 , 18, 055204	1.7	17
382	Quantum Mechanical Properties of Light Fields Carrying Orbital Angular Momentum 2016 , 435-454		1
381	Video recording true single-photon double-slit interference. American Journal of Physics, 2016, 84, 671-	·6 <i>7.7</i> 7	26
380	3D single-pixel video. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 035203	1.7	40
379	Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. <i>Optics Express</i> , 2016 , 24, 10476-85	3.3	107
378	The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge. <i>Journal of Modern Optics</i> , 2016 , 63, S51-S56	1.1	1
377	Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam. <i>Physical Review Letters</i> , 2016 , 117, 154801	7·4	21
376	Imaging with a small number of photons. <i>Nature Communications</i> , 2015 , 6, 5913	17.4	224
375	Optics. Spatially structured photons that travel in free space slower than the speed of light. <i>Science</i> , 2015 , 347, 857-60	33.3	90

(2014-2015)

374	Near video-rate linear Stokes imaging with single-pixel detectors. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 025705	1.7	35
373	Orbital Angular Momentum 2015 , 321-340		10
372	High-dimensional quantum cryptography with twisted light. New Journal of Physics, 2015, 17, 033033	2.9	335
371	A fast 3D reconstruction system with a low-cost camera accessory. <i>Scientific Reports</i> , 2015 , 5, 10909	4.9	23
370	Discrete emitters as a source of orbital angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 045608	1.7	16
369	Divergence of an orbital-angular-momentum-carrying beam upon propagation. <i>New Journal of Physics</i> , 2015 , 17, 023011	2.9	154
368	Development of a 3D printer using scanning projection stereolithography. <i>Scientific Reports</i> , 2015 , 5, 9875	4.9	117
367	Fabricating microscopic tools: towards optically actuated micro-robotics 2015,		2
366	Slow light in ruby: delaying energy beyond the input pulse 2015,		1
365	Study of Turbulence Induced Orbital Angular Momentum Channel Crosstalk in a 1.6km Free-Space Optical Link 2015 ,		5
364	Optically controlled hydrodynamic micro-manipulation 2015,		1
363	'Lissajous-like' trajectories in optical tweezers. <i>Optics Express</i> , 2015 , 23, 31716-27	3.3	2
362	Optically Induced Forces Imposed in an Optical Funnel on a Stream of Particles in Air or Vacuum. <i>Physical Review Applied</i> , 2015 , 4,	4.3	30
361	Simultaneous real-time visible and infrared video with single-pixel detectors. <i>Scientific Reports</i> , 2015 , 5, 10669	4.9	169
360	Photon-sparse microscopy: visible light imaging using infrared illumination. <i>Optica</i> , 2015 , 2, 1049	8.6	74
359	Generalized photon sieves: fine control of complex fields with simple pinhole arrays. <i>Optica</i> , 2015 , 2, 1028	8.6	26
358	Precision assembly of complex cellular microenvironments using holographic optical tweezers. <i>Scientific Reports</i> , 2015 , 5, 8577	4.9	64
357	Self-healing of quantum entanglement after an obstruction. <i>Nature Communications</i> , 2014 , 5, 3248	17.4	90

356	Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. <i>Physical Review A</i> , 2014 , 89,	2.6	70
355	Direct measurement of a 27-dimensional orbital-angular-momentum state vector. <i>Nature Communications</i> , 2014 , 5, 3115	17.4	145
354	Experimental demonstration of Klyshkoll advanced-wave picture using a coincidence-count based, camera-enabled imaging system. <i>Journal of Modern Optics</i> , 2014 , 61, 547-551	1.1	12
353	Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. <i>Nature Communications</i> , 2014 , 5, 4502	17.4	116
352	Shape-induced force fields in optical trapping. <i>Nature Photonics</i> , 2014 , 8, 400-405	33.9	95
351	Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. <i>Optics Letters</i> , 2014 , 39, 2845-8	3	95
350	Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles. <i>Physical Review A</i> , 2014 , 90,	2.6	36
349	A new twist on the Doppler shift. <i>Physics Today</i> , 2014 , 67, 58-59	0.9	12
348	Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell-cell approach. <i>Current Microbiology</i> , 2014 , 69, 669-74	2.4	12
347	Experimental demonstration of 16 Gbit/s millimeter-wave communications using MIMO processing of 2 OAM modes on each of two transmitter/receiver antenna apertures 2014 ,		12
346	Light's twist. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20140633	2.4	27
345	100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. <i>Optics Letters</i> , 2014 , 39, 197-200	3	309
344	Interference of probability amplitudes: a simple demonstration within the HongDuMandel experiment. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 032002	1.7	3
343	Practical bound for dimensionality in high-dimensional entanglement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 6122-3	11.5	1
342	Experimental investigation of the transient dynamics of slow light in ruby. <i>New Journal of Physics</i> , 2014 , 16, 123054	2.9	13
341	Limitations to the determination of a Laguerreffauss spectrum via projective, phase-flattening measurement. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, A20	1.7	62
340	Nanoarrays for the generation of complex optical wave-forms 2014,		1
339	3D computational ghost imaging 2014 ,		1

(2013-2014)

338	Reply to Comment on Evidence of slow-light effects from rotary drag of structured beams <i>New Journal of Physics</i> , 2014 , 16, 038002	2.9	2
337	Single-pixel infrared and visible microscope. <i>Optica</i> , 2014 , 1, 285	8.6	200
336	Tunable orbital angular momentum mode filter based on optical geometric transformation. <i>Optics Letters</i> , 2014 , 39, 1689-92	3	14
335	Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. <i>Optica</i> , 2014 , 1, 1	8.6	80
334	Dynamic stereo microscopy for studying particle sedimentation. <i>Optics Express</i> , 2014 , 22, 4671-7	3.3	17
333	Mechanical Faraday effect for orbital angular momentum-carrying beams. <i>Optics Express</i> , 2014 , 22, 116	997	10
332	Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation. <i>Optics Express</i> , 2014 , 22, 18662-7	3.3	6
331	Demonstration of 8-mode 32-Gbit/s millimeter-wave free-space communication link using 4 orbital-angular-momentum modes on 2 polarizations 2014 ,		6
330	High-capacity millimetre-wave communications with orbital angular momentum multiplexing. <i>Nature Communications</i> , 2014 , 5, 4876	17.4	623
329	Observation of the rotational Doppler effect from an optically trapped micro-particle 2014,		1
328	Entropic uncertainty minimum for angle and angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 105404	1.7	
327	Optical angular momentum in a rotating frame. <i>Optics Letters</i> , 2014 , 39, 2944-6	3	20
326	Orbital-Angular-Momentum Mode (De)Multiplexer: A Single Optical Element for MIMO-based and non-MIMO-based Multimode Fiber Systems 2014 ,		6
325	Red TweezerstlFast, customisable hologram generation for optical tweezers. <i>Computer Physics Communications</i> , 2014 , 185, 268-273	4.2	60
324	Experimental Analysis of Multiplexing/demultiplexing Laguerre Gaussian Beams with Different Radial Index 2014 ,		2
323	Orbital Angular Momentum: Testbed for Quantum Mechanics 2014 , 159-171		
322	Measuring nanoparticle flow with the image structure function. <i>Lab on A Chip</i> , 2013 , 13, 2359-63	7.2	9
321	Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. <i>Physical Review A</i> , 2013 , 88,	2.6	193

320	Two-photon optics of Bessel-Gaussian modes. <i>Physical Review A</i> , 2013 , 88,	2.6	31
319	Multimode Communications Using Orbital Angular Momentum 2013 , 569-615		4
318	Evidence of slow-light effects from rotary drag of structured beams. <i>New Journal of Physics</i> , 2013 , 15, 083020	2.9	11
317	Detection of a spinning object using light's orbital angular momentum. <i>Science</i> , 2013 , 341, 537-40	33.3	512
316	Efficient sorting of Bessel beams. <i>Optics Express</i> , 2013 , 21, 165-71	3.3	48
315	Optical trapping and binding. <i>Reports on Progress in Physics</i> , 2013 , 76, 026401	14.4	191
314	Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states. <i>New Journal of Physics</i> , 2013 , 15, 013024	2.9	56
313	Optical trapping at gigapascal pressures. <i>Physical Review Letters</i> , 2013 , 110, 095902	7.4	16
312	Characterization of high-dimensional entangled systems via mutually unbiased measurements. <i>Physical Review Letters</i> , 2013 , 110, 143601	7.4	64
311	3D computational imaging with single-pixel detectors. <i>Science</i> , 2013 , 340, 844-7	33.3	488
311	3D computational imaging with single-pixel detectors. <i>Science</i> , 2013 , 340, 844-7 Multi-wavelength compressive computational ghost imaging 2013 ,	33.3	488
310	Multi-wavelength compressive computational ghost imaging 2013,		8
310	Multi-wavelength compressive computational ghost imaging 2013 , Optical activity in twisted solid-core photonic crystal fibers. <i>Physical Review Letters</i> , 2013 , 110, 143903		8
310 309 308	Multi-wavelength compressive computational ghost imaging 2013, Optical activity in twisted solid-core photonic crystal fibers. <i>Physical Review Letters</i> , 2013, 110, 143903 Light in a twist: optical angular momentum 2013, 100 Tbit/s Free-Space Data Link using Orbital Angular Momentum Mode Division Multiplexing		8 66 4
310 309 308 307	Multi-wavelength compressive computational ghost imaging 2013, Optical activity in twisted solid-core photonic crystal fibers. <i>Physical Review Letters</i> , 2013, 110, 143903 Light in a twist: optical angular momentum 2013, 100 Tbit/s Free-Space Data Link using Orbital Angular Momentum Mode Division Multiplexing Combined with Wavelength Division Multiplexing 2013,	7.4	8 66 4 16
310 309 308 307 306	Multi-wavelength compressive computational ghost imaging 2013, Optical activity in twisted solid-core photonic crystal fibers. <i>Physical Review Letters</i> , 2013, 110, 143903 Light in a twist: optical angular momentum 2013, 100 Tbit/s Free-Space Data Link using Orbital Angular Momentum Mode Division Multiplexing Combined with Wavelength Division Multiplexing 2013, Differential Computational Ghost Imaging 2013,	7.4	8 66 4 16

302	Reconfigurable orbital angular momentum and polarization manipulation of 100 Gbit/s QPSK data channels. <i>Optics Letters</i> , 2013 , 38, 5240-3	3	12
301	Optically trapped and driven paddle-wheel. <i>New Journal of Physics</i> , 2013 , 15, 063016	2.9	22
300	Tailored two-photon correlation and fair-sampling: a cautionary tale. <i>New Journal of Physics</i> , 2013 , 15, 083047	2.9	15
299	3D computational ghost imaging 2013 ,		2
298	A multi-object spectral imaging instrument. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 085302	1.7	8
297	Fashioning microscopic tools 2013 ,		1
296	Speeding up liquid crystal SLMs using overdrive with phase change reduction. <i>Optics Express</i> , 2013 , 21, 1779-97	3.3	74
295	Optimizing the use of detector arrays for measuring intensity correlations of photon pairs. <i>Physical Review A</i> , 2013 , 88,	2.6	15
294	EPR-based ghost imaging using a single-photon-sensitive camera. New Journal of Physics, 2013, 15, 073	032)	87
293	Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5	3	154
293		3	154
	angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5 The measurement and generation of orbital angular momentum using an optical geometric	1.3	
292	angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5 The measurement and generation of orbital angular momentum using an optical geometric transformation 2013 , Bounds and optimisation of orbital angular momentum bandwidths within parametric	1.3	14
292	angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5 The measurement and generation of orbital angular momentum using an optical geometric transformation 2013 , Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. <i>European Physical Journal D</i> , 2012 , 66, 1 Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular	1.3	4
292 291 290	angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5 The measurement and generation of orbital angular momentum using an optical geometric transformation 2013 , Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. <i>European Physical Journal D</i> , 2012 , 66, 1 Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control (Angew. Chem. 51/2012). <i>Angewandte Chemie</i> , 2012 , 124, 12799. Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by	1.3)- 1 2799	4 14 5
292 291 290 289	angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5 The measurement and generation of orbital angular momentum using an optical geometric transformation 2013 , Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. <i>European Physical Journal D</i> , 2012 , 66, 1 Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control (Angew. Chem. 51/2012). <i>Angewandte Chemie</i> , 2012 , 124, 12799 Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control. <i>Angewandte Chemie</i> , 2012 , 124, 12926-12930 Directed assembly of inorganic polyoxometalate-based micrometer-scale tubular architectures by	1.3 9- ³ 2799 3.6	4 14 5
292 291 290 289 288	The measurement and generation of orbital angular momentum using an optical geometric transformation 2013, Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. European Physical Journal D, 2012, 66, 1 Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control (Angew. Chem. 51/2012). Angewandte Chemie, 2012, 124, 12799. Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control. Angewandte Chemie, 2012, 124, 12926-12930 Directed assembly of inorganic polyoxometalate-based micrometer-scale tubular architectures by using optical control. Angewandte Chemie - International Edition, 2012, 51, 12754-8 Increasing the dimension in high-dimensional two-photon orbital angular momentum	1.3 9- ³ 2799 3.6 16.4	4 14 5 24

284	The efficient sorting of light's orbital angular momentum for optical communications 2012,		4
283	Imaging high-dimensional spatial entanglement with a camera. <i>Nature Communications</i> , 2012 , 3, 984	17.4	150
282	Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 085401	1.7	23
281	Determining the dimensionality of bipartite orbital-angular-momentum entanglement using multi-sector phase masks. <i>New Journal of Physics</i> , 2012 , 14, 073046	2.9	13
280	Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 045003	1.7	10
279	Influence of atmospheric turbulence on states of light carrying orbital angular momentum. <i>Optics Letters</i> , 2012 , 37, 3735-7	3	139
278	Refractive elements for the measurement of the orbital angular momentum of a single photon. <i>Optics Express</i> , 2012 , 20, 2110-5	3.3	161
277	Optical shield: measuring viscosity of turbid fluids using optical tweezers. <i>Optics Express</i> , 2012 , 20, 1212	2 73.3 32	9
276	Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. <i>Optics Express</i> , 2012 , 20, 13195-200	3.3	206
275	Entangled Bessel-Gaussian beams. <i>Optics Express</i> , 2012 , 20, 23589-97	3.3	82
274	Normalized ghost imaging. <i>Optics Express</i> , 2012 , 20, 16892	3.3	213
273	Quantum correlations in position, momentum, and intermediate bases for a full optical field of view. <i>Physical Review A</i> , 2012 , 85,	2.6	14
272	An optically actuated surface scanning probe. <i>Optics Express</i> , 2012 , 20, 29679-93	3.3	54
271	A compact holographic optical tweezers instrument. <i>Review of Scientific Instruments</i> , 2012 , 83, 113107	1.7	22
270	Force sensing with a shaped dielectric micro-tool. <i>Europhysics Letters</i> , 2012 , 99, 58004	1.6	34
269	Photon orbital angular momentum: generation, measurement and application to QKD 2012 ,		1
268	Orbital Angular Momentum 2012 , 3-12		
267	Entangled optical vortex links. <i>Physical Review Letters</i> , 2011 , 106, 100407	7.4	43

(2011-2011)

266	Robust interferometer for the routing of light beams carrying orbital angular momentum. <i>New Journal of Physics</i> , 2011 , 13, 093014	2.9	35
265	Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 044023	1.7	28
264	Orbital angular momentum: origins, behavior and applications. <i>Advances in Optics and Photonics</i> , 2011 , 3, 161	16.7	1687
263	Single-photon position to time multiplexing using a fiber array. <i>Optics Express</i> , 2011 , 19, 2670-5	3.3	6
262	Position clamping in a holographic counterpropagating optical trap. <i>Optics Express</i> , 2011 , 19, 9908-14	3.3	23
261	Position clamping of optically trapped microscopic non-spherical probes. <i>Optics Express</i> , 2011 , 19, 2062	.2 ₃ 73	26
260	Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample. <i>Optics Express</i> , 2011 , 19, 24589-95	3.3	16
259	Measuring orbital angular momentum superpositions of light by mode transformation. <i>Optics Letters</i> , 2011 , 36, 1863-5	3	49
258	Holographic optical tweezers and their relevance to lab on chip devices. <i>Lab on A Chip</i> , 2011 , 11, 1196-2	20,52	166
257	Tweezers with a twist. <i>Nature Photonics</i> , 2011 , 5, 343-348	33.9	1159
²⁵⁷	Tweezers with a twist. <i>Nature Photonics</i> , 2011 , 5, 343-348 Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680	33.9	1159 408
	Experimental high-dimensional two-photon entanglement and violations of generalized Bell		
256	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680	16.2	408
256 255	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680 Rotary photon drag enhanced by a slow-light medium. <i>Science</i> , 2011 , 333, 65-7 Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. <i>European</i>	16.2 33·3	408
256 255 254	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680 Rotary photon drag enhanced by a slow-light medium. <i>Science</i> , 2011 , 333, 65-7 Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 149-158 Efficient generation of Bessel beam arrays by means of an SLM. <i>European Physical Journal: Special</i>	16.2 33·3 2.3	408 79 27
256 255 254 253	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680 Rotary photon drag enhanced by a slow-light medium. <i>Science</i> , 2011 , 333, 65-7 Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 149-158 Efficient generation of Bessel beam arrays by means of an SLM. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 159-166	16.2 33.3 2.3	408 79 27 26
256255254253252	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680 Rotary photon drag enhanced by a slow-light medium. <i>Science</i> , 2011 , 333, 65-7 Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 149-158 Efficient generation of Bessel beam arrays by means of an SLM. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 159-166 Knotted and tangled threads of darkness in light beams. <i>Contemporary Physics</i> , 2011 , 52, 265-279	16.2 33.3 2.3 2.3	408 79 27 26

248	Optical tweezers: wideband microrheology. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 044022	1.7	44
247	Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 064006	1.7	74
246	Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers. Journal of Optics (United Kingdom), 2011 , 13, 044003	1.7	26
245	Investigating the interaction forces between T cells and antigen-presenting cells using an optical trapping system 2011 ,		1
244	Surface imaging using optically controlled microrods 2011,		1
243	Measuring the orbital angular momentum of light 2011,		1
242	Holographic tweezers: a platform for plasmonics 2011,		3
241	Isolated optical vortex knots. <i>Nature Physics</i> , 2010 , 6, 118-121	16.2	281
240	Calibration of optically trapped nanotools. <i>Nanotechnology</i> , 2010 , 21, 175501	3.4	22
239	An SLM-based ShackHartmann wavefront sensor for aberration correction in optical tweezers. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 124004	1.7	48
238	Spin-orbit hybrid entanglement of photons and quantum contextuality. <i>Physical Review A</i> , 2010 , 82,	2.6	119
237	Angular two-photon interference and angular two-qubit states. <i>Physical Review Letters</i> , 2010 , 104, 010!	5 9 14	30
236	A polyphonic acoustic vortex and its complementary chords. New Journal of Physics, 2010, 12, 023018	2.9	6
235	Efficient sorting of orbital angular momentum states of light. <i>Physical Review Letters</i> , 2010 , 105, 15360	1 _{7.4}	573
234	Quantum correlations in optical angle-orbital angular momentum variables. <i>Science</i> , 2010 , 329, 662-5	33.3	367
233	Particle tracking stereomicroscopy in optical tweezers: control of trap shape. <i>Optics Express</i> , 2010 , 18, 11785-90	3.3	70
232	Mathieu beams as versatile light moulds for 3D micro particle assemblies. <i>Optics Express</i> , 2010 , 18, 2608	8 4:9 1	49
231	Measuring storage and loss moduli using optical tweezers: broadband microrheology. <i>Physical Review E</i> , 2010 , 81, 026308	2.4	51

(2009-2010)

230	Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. <i>Physical Review A</i> , 2010 , 81,	2.6	54
229	Violation of Leggett inequalities in orbital angular momentum subspaces. <i>New Journal of Physics</i> , 2010 , 12, 123007	2.9	26
228	High-dimensional quantum nature of ghost angular Young diffraction. Physical Review A, 2010, 82,	2.6	14
227	Real time characterization of hydrodynamics in optically trapped networks of micro-particles. <i>Journal of Biophotonics</i> , 2010 , 3, 244-51	3.1	7
226	Assembly and force measurement with SPM-like probes in holographic optical tweezers. <i>New Journal of Physics</i> , 2009 , 11, 023012	2.9	38
225	A comprehensive software suite for optical trapping and manipulation 2009,		3
224	Underdamped modes in a hydrodynamically coupled microparticle system. <i>New Journal of Physics</i> , 2009 , 11, 053007	2.9	9
223	Optical trapping studies of colloidal interactions in liquid films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 343, 133-136	5.1	2
222	Precise quantum tomography of photon pairs with entangled orbital angular momentum. <i>New Journal of Physics</i> , 2009 , 11, 103024	2.9	60
221	Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. <i>Optics Express</i> , 2009 , 17, 3595-602	3.3	39
220	Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. <i>Optics Express</i> , 2009 , 17, 8287-93	3.3	120
219	Touching the microworld with force-feedback optical tweezers. <i>Optics Express</i> , 2009 , 17, 10259-64	3.3	57
218	Increasing trap stiffness with position clamping in holographic optical tweezers. <i>Optics Express</i> , 2009 , 17, 22718-25	3.3	60
217	Holographic ghost imaging and the violation of a Bell inequality. <i>Physical Review Letters</i> , 2009 , 103, 083	8602	134
216	Microrheology with optical tweezers. Lab on A Chip, 2009, 9, 2568-75	7.2	100
215	Methodology for imaging the 3D structure of singularities in scalar and vector optical fields. <i>Journal of Optics</i> , 2009 , 11, 094020		15
214	Multipoint viscosity measurements in microfluidic channels using optical tweezers. <i>Lab on A Chip</i> , 2009 , 9, 2059-62	7.2	25
213	Topology of light's darkness. <i>Physical Review Letters</i> , 2009 , 102, 143902	7.4	47

212	Comparison of FaxB's correction for a microsphere translating or rotating near a surface. <i>Physical Review E</i> , 2009 , 79, 026301	2.4	104
211	Manipulation of live mouse embryonic stem cells using holographic optical tweezers. <i>Journal of Modern Optics</i> , 2009 , 56, 448-452	1.1	10
210	Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. <i>Progress in Optics</i> , 2009 , 53, 293-363	3.4	425
209	Angular diffraction 2009,		1
208	High-Speed Camera Particle Tracking and Force Measurement, with Real-Time Haptic Feedback 2009 ,		2
207	Introduction to Phase-Structured Electromagnetic Waves 2008, 1-17		3
206	Rotation of Particles in Optical Tweezers 2008 , 237-248		3
205	3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers. <i>Analytical Chemistry</i> , 2008 , 80, 4237-40	7.8	18
204	Light beams with fractional orbital angular momentum and their vortex structure. <i>Optics Express</i> , 2008 , 16, 993-1006	3.3	159
203	Transfer of orbital angular momentum from a super-continuum, white-light beam. <i>Optics Express</i> , 2008 , 16, 9495-500	3.3	24
202	Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers. <i>Optics Express</i> , 2008 , 16, 13005-15	3.3	31
201	Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. <i>Optics Express</i> , 2008 , 16, 14561-70	3.3	150
200	Independent polarisation control of multiple optical traps. <i>Optics Express</i> , 2008 , 16, 15897-902	3.3	32
199	Three-dimensional parallel holographic micropatterning using a spatial light modulator. <i>Optics Express</i> , 2008 , 16, 15942-8	3.3	59
198	On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum. <i>Optics Express</i> , 2008 , 16, 20864-8	3.3	19
197	Detection of mucosal abnormalities in patients with oral cancer using a photodynamic technique: A pilot study. <i>British Journal of Oral and Maxillofacial Surgery</i> , 2008 , 46, 6-10	1.4	4
196	Fourier relationship between the angle and angular momentum of entangled photons. <i>Physical Review A</i> , 2008 , 78,	2.6	42
195	On the focussing of light, as limited by the uncertainty principle. <i>Journal of Modern Optics</i> , 2008 , 55, 30	083.308	39 8

(2007-2008)

194	A spatial light phase modulator with an effective resolution of 4 mega-pixels. <i>Journal of Modern Optics</i> , 2008 , 55, 2945-2951	1.1	3
193	An acoustic spanner and its associated rotational Doppler shift. New Journal of Physics, 2008, 10, 0130	01&.9	89
192	Breath ethane peaks during a single haemodialysis session and is associated with time on dialysis. <i>Journal of Breath Research</i> , 2008 , 2, 026004	3.1	9
191	Optically driven pumps and flow sensors for microfluidic systems. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2008 , 222, 829-837	1.3	7
190	Angular diffraction. New Journal of Physics, 2008, 10, 103013	2.9	92
189	Holographic assembly workstation for optical manipulation. <i>Journal of Optics</i> , 2008 , 10, 044009		35
188	Hydrodynamic interactions in two dimensions. <i>Physical Review E</i> , 2008 , 78, 031406	2.4	36
187	Polarization singularities in 2D and 3D speckle fields. <i>Physical Review Letters</i> , 2008 , 100, 203902	7.4	89
186	"Aether drag" and moving images. <i>Physical Review Letters</i> , 2008 , 100, 153902	7.4	29
185	The fractal shape of speckled darkness 2008,		3
185	The fractal shape of speckled darkness 2008, Advances in optical angular momentum. Laser and Photonics Reviews, 2008, 2, 299-313	8.3	3 627
		8. ₃ 6. ₇	
184	Advances in optical angular momentum. <i>Laser and Photonics Reviews</i> , 2008 , 2, 299-313 High throughput diffractive multi-beam femtosecond laser processing using a spatial light		627
184	Advances in optical angular momentum. <i>Laser and Photonics Reviews</i> , 2008 , 2, 299-313 High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. <i>Applied Surface Science</i> , 2008 , 255, 2284-2289	6.7	627 80
184 183 182	Advances in optical angular momentum. Laser and Photonics Reviews, 2008, 2, 299-313 High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Applied Surface Science, 2008, 255, 2284-2289 Fractality of light's darkness. Physical Review Letters, 2008, 100, 053902 Equivalent geometric transformations for spin and orbital angular momentum of light. Journal of	6.7 7·4	627 80 72
184 183 182	Advances in optical angular momentum. Laser and Photonics Reviews, 2008, 2, 299-313 High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Applied Surface Science, 2008, 255, 2284-2289 Fractality of light's darkness. Physical Review Letters, 2008, 100, 053902 Equivalent geometric transformations for spin and orbital angular momentum of light. Journal of Modern Optics, 2007, 54, 487-491 Fluorescence induced by aminolevulinic acid and methyl aminolevulinate on normal skin.	6.7 7·4 1.1	627 80 72 30
184 183 182 181	Advances in optical angular momentum. Laser and Photonics Reviews, 2008, 2, 299-313 High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Applied Surface Science, 2008, 255, 2284-2289 Fractality of light's darkness. Physical Review Letters, 2008, 100, 053902 Equivalent geometric transformations for spin and orbital angular momentum of light. Journal of Modern Optics, 2007, 54, 487-491 Fluorescence induced by aminolevulinic acid and methyl aminolevulinate on normal skin. Photodiagnosis and Photodynamic Therapy, 2007, 4, 224-9 On the dragging of light by a rotating medium. Proceedings of the Royal Society A: Mathematical,	6.7 7·4 1.1 3·5	627 80 72 30

176 Optical vortices and topology **2007**, CMI33

175	Fabrication of terahertz holograms. <i>Journal of Vacuum Science & Technology B</i> , 2007 , 25, 2329		2
174	Optically controlled grippers for manipulating micron-sized particles. <i>New Journal of Physics</i> , 2007 , 9, 14-14	2.9	16
173	Parametric resonance of optically trapped aerosols. <i>Physical Review Letters</i> , 2007 , 99, 010601	7.4	50
172	Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. <i>Physical Review E</i> , 2007 , 76, 061402	2.4	37
171	Portable optical spectroscopy for accurate analysis of ethane in exhaled breath. <i>Measurement Science and Technology</i> , 2007 , 18, 1459-1464	2	26
170	Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. <i>Journal of Breath Research</i> , 2007 , 1, 026005	3.1	19
169	Optical ferris wheel for ultracold atoms. <i>Optics Express</i> , 2007 , 15, 8619-25	3.3	229
168	The effect of external forces on discrete motion within holographic optical tweezers. <i>Optics Express</i> , 2007 , 15, 18268-74	3.3	17
167	Imaging of methane gas using a scanning, open-path laser system. New Journal of Physics, 2006 , 8, 26-2	6 2.9	17
166	Multipoint holographic optical velocimetry in microfluidic systems. <i>Physical Review Letters</i> , 2006 , 96, 134502	7.4	54
165	An optically driven pump for microfluidics. <i>Lab on A Chip</i> , 2006 , 6, 735-9	7.2	148
164	Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors. <i>Lab on A Chip</i> , 2006 , 6, 788-93	7.2	41
163	Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation. <i>Optics Letters</i> , 2006 , 31, 2205-7	3	40
162	Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. <i>Optics Express</i> , 2006 , 14, 222-8	3.3	24
161	Topology of optical vortex lines formed by the interference of three, four, and five plane waves. <i>Optics Express</i> , 2006 , 14, 3039-44	3.3	133
160	Aberration correction in holographic optical tweezers. <i>Optics Express</i> , 2006 , 14, 4169-74	3.3	68
159	Aberration correction in holographic optical tweezers. <i>Optics Express</i> , 2006 , 14, 4170-5	3.3	35

(2005-2006)

158	Generation of achromatic Bessel beams using a compensated spatial light modulator. <i>Optics Express</i> , 2006 , 14, 5581-7	3.3	75
157	Fourier relationship between angular position and optical orbital angular momentum. <i>Optics Express</i> , 2006 , 14, 9071-6	3.3	109
156	Direct measurement of the skew angle of the Poynting vector in a helically phased beam. <i>Optics Express</i> , 2006 , 14, 11919-24	3.3	96
155	An optical trapped microhand for manipulating micron-sized objects. <i>Optics Express</i> , 2006 , 14, 12497-50	023.3	53
154	Observation of quantum entanglement using spatial light modulators. <i>Optics Express</i> , 2006 , 14, 13089-	9 4 .3	44
153	Interactive approach to optical tweezers control. <i>Applied Optics</i> , 2006 , 45, 897-903	1.7	106
152	Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. <i>Respiratory Medicine</i> , 2006 , 100, 300-6	4.6	53
151	Illustrations of optical vortices in three dimensions. <i>Journal of the European Optical Society-Rapid Publications</i> , 2006 , 1,	2.5	16
150	Optical pumps and sensors for microfluidic devices 2006 , 6131, 71		1
149	Characteristics of 5-aminolaevulinic acid-induced protoporphyrin IX fluorescence in human skin in vivo. <i>Photodermatology Photoimmunology and Photomedicine</i> , 2006 , 22, 105-10	2.4	34
148	Modelling and interpretation of gas detection using remote laser pointers. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2006 , 63, 929-39	4.4	5
147	Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. <i>Lab on A Chip</i> , 2005 , 5, 1224-8	7.2	67
146	Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science. <i>Applied Optics</i> , 2005 , 44, 4712-21	1.7	22
145	3D interferometric optical tweezers using a single spatial light modulator. <i>Optics Express</i> , 2005 , 13, 377	17 3 856	88
144	Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. <i>Optics Express</i> , 2005 , 13, 4148-53	3.3	16
143	Red microchip VECSEL array. <i>Optics Express</i> , 2005 , 13, 7209-14	3.3	17
142	H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 1861-1871	5.5	116
141	Momentum paradox in a vortex core. <i>Journal of Modern Optics</i> , 2005 , 52, 1135-1144	1.1	10

140	Vortex knots in light. New Journal of Physics, 2005, 7, 55-55	2.9	168
139	Observation of Gouy-phase-induced transversal intensity changes in focused beams. <i>Journal of Modern Optics</i> , 2005 , 52, 2713-2721	1.1	5
138	Minimum uncertainty states of angular momentum and angular position. <i>New Journal of Physics</i> , 2005 , 7, 62-62	2.9	24
137	The photodynamic detection of mucosal abnormality in oral cancer patients: a pilot study 2005 , 5691, 159		
136	A Fine Point on Light Angular Momentum. <i>Physics Today</i> , 2005 , 58, 17-17	0.9	
135	Effect of maximal dynamic exercise on exhaled ethane and carbon monoxide levels in human, equine, and canine athletes. <i>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology</i> , 2005 , 141, 239-46	2.6	18
134	An open-path, hand-held laser system for the detection of methane gas. Journal of Optics, 2005, 7, S420)-S424	31
133	The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy. <i>Journal of Optics</i> , 2005 , 7, S376-S384		18
132	Effects of changes to the stable environment on the exhalation of ethane, carbon monoxide and hydrogen peroxide by horses with respiratory inflammation. <i>Veterinary Record</i> , 2005 , 157, 408-12	0.9	9
131	The mechanism for energy transfer in the rotational frequency shift of a light beam. <i>Journal of Optics</i> , 2004 , 6, S263-S265		20
130	Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. <i>Physical Review Letters</i> , 2004 , 92, 013601	7.4	225
129	Increasing the data density of free-space optical communications using orbital angular momentum 2004 , 5550, 367		18
128	In vivo measurement of 5-aminolaevulinic acid-induced protoporphyrin IX photobleaching: a comparison of red and blue light of various intensities. <i>Photodermatology Photoimmunology and Photomedicine</i> , 2004 , 20, 170-4	2.4	26
127	Laser beams: knotted threads of darkness. <i>Nature</i> , 2004 , 432, 165	50.4	160
126	Visual observations of SERRS from single silver-coated silica microparticles within optical tweezers. Angewandte Chemie - International Edition, 2004 , 43, 2512-4	16.4	16
125	Visual Observations of SERRS from Single Silver-Coated Silica Microparticles within Optical Tweezers. <i>Angewandte Chemie</i> , 2004 , 116, 2566-2568	3.6	
124	Permanent 3D microstructures in a polymeric host created using holographic optical tweezers. Journal of Modern Optics, 2004 , 51, 627-632	1.1	29
123	Defining the trapping limits of holographical optical tweezers. <i>Journal of Modern Optics</i> , 2004 , 51, 409-4	414	57

122	Photodynamic therapy in dermatology: Dundee clinical and research experience. <i>Photodiagnosis and Photodynamic Therapy</i> , 2004 , 1, 211-23	3.5	17
121	Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	15
120	Uncertainty principle for angular position and angular momentum. New Journal of Physics, 2004, 6, 103-	-1203	158
119	Observation of the vortex structure of a non-integer vortex beam. New Journal of Physics, 2004, 6, 71-7	12.9	254
118	Light Orbital Angular Momentum. <i>Physics Today</i> , 2004 , 57, 35-40	0.9	427
117	3D manipulation of particles into crystal structures using holographic optical tweezers. <i>Optics Express</i> , 2004 , 12, 220-6	3.3	153
116	Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. <i>Optics Express</i> , 2004 , 12, 1665-70	3.3	102
115	Free-space information transfer using light beams carrying orbital angular momentum. <i>Optics Express</i> , 2004 , 12, 5448-56	3.3	1631
114	Assembly of 3-dimensional structures using programmable holographic optical tweezers. <i>Optics Express</i> , 2004 , 12, 5475-80	3.3	123
113	Three-dimensional optical trapping of partially silvered silica microparticles. <i>Optics Letters</i> , 2004 , 29, 2488-90	3	14
113		3	14
·	29, 2488-90	2.9	
112	29, 2488-90 Three-dimensional structures in optical tweezers 2004 ,		1
112	Three-dimensional structures in optical tweezers 2004 , Observation of chromatic effects near a white-light vortex. <i>New Journal of Physics</i> , 2003 , 5, 154-154 Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case.	2.9	73
112 111 110	Three-dimensional structures in optical tweezers 2004, Observation of chromatic effects near a white-light vortex. New Journal of Physics, 2003, 5, 154-154 Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. Diseases of the Colon and Rectum, 2003, 46, 1555-9 Simplified measurement of the orbital angular momentum of single photons. Optics	2.9	1 73 32
112 111 110	Three-dimensional structures in optical tweezers 2004, Observation of chromatic effects near a white-light vortex. New Journal of Physics, 2003, 5, 154-154 Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. Diseases of the Colon and Rectum, 2003, 46, 1555-9 Simplified measurement of the orbital angular momentum of single photons. Optics Communications, 2003, 223, 117-122	2.9	1 73 32 38
112 111 110 109 108	Three-dimensional structures in optical tweezers 2004, Observation of chromatic effects near a white-light vortex. New Journal of Physics, 2003, 5, 154-154 Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. Diseases of the Colon and Rectum, 2003, 46, 1555-9 Simplified measurement of the orbital angular momentum of single photons. Optics Communications, 2003, 223, 117-122 Classic-fractal eigenmodes of unstable canonical resonators. Optics Communications, 2003, 223, 17-23 A Multimode Fibre-coupled Compact Optical Wavelength Meter based on Wollaston Prisms. Strain,	2.9 3.1 2	1 73 32 38

104	Optically controlled three-dimensional rotation of microscopic objects. <i>Applied Physics Letters</i> , 2003 , 82, 829-831	3.4	97
103	Performance of a rotating aperture for spinning and orienting objects in optical tweezers. <i>Journal of Modern Optics</i> , 2003 , 50, 1533-1538	1.1	8
102	Optical tweezers in a new light. <i>Journal of Modern Optics</i> , 2003 , 50, 1501-1507	1.1	17
101	The angular momentum of light inside a dielectric. <i>Journal of Modern Optics</i> , 2003 , 50, 1555-1562	1.1	48
100	Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. <i>Physical Review Letters</i> , 2003 , 91, 093602	7.4	216
99	Fractals in pixellated video feedback. Contemporary Physics, 2003, 44, 137-143	3.3	3
98	Optical Angular Momentum 2003,		456
97	Preface: Optical tweezers in a new light. <i>Journal of Modern Optics</i> , 2003 , 50, 1501-1507	1.1	19
96	A field-portable, laser-diode spectrometer for the ultra-sensitive detection of hydrocarbon gases. <i>Journal of Modern Optics</i> , 2002 , 49, 769-776	1.1	12
95	Wollaston prism-based digital laser wavelength meter 2002 , 4653, 141		
94	Holographic generation and orbital angular momentum of high-order Mathieu beams. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2002 , 4, S52-S57		102
93	Rotational control within optical tweezers by use of a rotating aperture. <i>Optics Letters</i> , 2002 , 27, 743-5	3	91
92	Why are the eigenmodes of stable laser resonators structurally stable?. Optics Letters, 2002, 27, 1869-7	13	8
91	Lights, action: Optical tweezers. <i>Contemporary Physics</i> , 2002 , 43, 241-258	3.3	286
90	Orbital angular momentum exchange in cylindrical-lens mode converters. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2002 , 4, S17-S19		66
89	Measuring the orbital angular momentum of a single photon. <i>Physical Review Letters</i> , 2002 , 88, 257901	7.4	688
88	Two-photon entanglement of orbital angular momentum states. Physical Review A, 2002, 65,	2.6	149
87	Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. <i>Physical Review Letters</i> , 2002 , 88, 053601	7.4	596

86	Entanglement of orbital angular momentum for the signal and idler beams in parametric down-conversion. <i>Journal of Modern Optics</i> , 2002 , 49, 777-785	1.1	19
85	Endoscopic fluorescence imaging and point spectroscopy system for the detection of gastro-intestinal cancers. <i>Journal of Modern Optics</i> , 2002 , 49, 731-741	1.1	10
84	Fractal generation using optical feedback with incoherent gain. Optics Communications, 2001, 190, 123-	1 <u>2</u> 7	1
83	Axial and lateral trapping efficiency of Laguerrellaussian modes in inverted optical tweezers. <i>Optics Communications</i> , 2001 , 193, 45-50	2	90
82	The Application of a Compact Multispectral Imaging System with Integrated Excitation Source to In vivo Monitoring of Fluorescence During Topical Photodynamic Therapy of Superficial Skin Cancers¶. <i>Photochemistry and Photobiology</i> , 2001 , 73, 278-282	3.6	29
81	Fractals in pixellated video feedback. <i>Nature</i> , 2001 , 414, 864	50.4	10
80	Unambiguous interferometric surface profilometry using ferroelectric liquid crystal modulators. <i>Journal of Electronic Imaging</i> , 2001 , 10, 263	0.7	2
79	Mueller matrix error correction for a fringe-free interferometry system. <i>Applied Optics</i> , 2001 , 40, 3205-7	1 0 .7	
78	The Poynting vector in Laguerre Laussian beams and the interpretation of their angular momentum density. <i>Optics Communications</i> , 2000 , 184, 67-71	2	165
77	Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. <i>Optics Communications</i> , 2000 , 185, 139-1	2 3	99
76	Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. <i>Optics Communications</i> , 2000 , 173, 269-274	2	43
75	Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators. <i>Physical Review Letters</i> , 2000 , 85, 5320-3	7.4	24
74	Aberrations introduced by a lens made from a birefringent material. <i>Applied Optics</i> , 2000 , 39, 592-8	1.7	30
73	Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. <i>Optics Letters</i> , 2000 , 25, 191-3	3	320
72	Fluorescence detection of superficial skin cancers. <i>Journal of Modern Optics</i> , 2000 , 47, 2021-2027	1.1	12
71	Generation of self-reproducing fractal patterns using a multiple imaging system with feedback. Journal of Modern Optics, 2000 , 47, 1469-1474	1.1	4
70	Light with a twist in its tail. Contemporary Physics, 2000, 41, 275-285	3.3	158
69	Performance of a cylindrical lens mode converter for producing LaguerreLaussian laser modes. <i>Optics Communications</i> , 1999 , 159, 13-18	2	128

68	The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. <i>Optics Communications</i> , 1999 , 170, 213-215	2	94
67	The angular momentum of light: optical spanners and the rotational frequency shift. <i>Optical and Quantum Electronics</i> , 1999 , 31, 1-12	2.4	30
66	A technique for modelling the performance of birefringent wave plates. <i>Optical and Quantum Electronics</i> , 1999 , 31, 645-653	2.4	
65	Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer. <i>Journal of Optics</i> , 1999 , 1, 680-684		9
64	Efficiency of second-harmonic generation with Bessel beams. <i>Physical Review A</i> , 1999 , 60, 2438-2441	2.6	40
63	Parametric down-conversion for light beams possessing orbital angular momentum. <i>Physical Review A</i> , 1999 , 59, 3950-3952	2.6	84
62	Dove prisms and polarized light. <i>Journal of Modern Optics</i> , 1999 , 46, 175-179	1.1	51
61	IV The Orbital Angular Momentum of Light. <i>Progress in Optics</i> , 1999 , 39, 291-372	3.4	625
60	Continuous-wave optical parametric oscillator based on periodically poled KTiOPO(4) and its application to spectroscopy. <i>Optics Letters</i> , 1999 , 24, 397-9	3	29
59	PoincarEsphere equivalent for light beams containing orbital angular momentum. <i>Optics Letters</i> , 1999 , 24, 430-2	3	258
58	Matrix formulation for the propagation of light beams with orbital and spin angular momenta. <i>Physical Review E</i> , 1999 , 60, 7497-503	2.4	51
57	The production of multiringed Laguerrellaussian modes by computer-generated holograms. <i>Journal of Modern Optics</i> , 1998 , 45, 1231-1237	1.1	213
56	Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum. <i>Physical Review Letters</i> , 1998 , 80, 3217-3219	7.4	191
55	Rotational Frequency Shift of a Light Beam. <i>Physical Review Letters</i> , 1998 , 81, 4828-4830	7.4	223
54	Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. <i>Applied Optics</i> , 1998 , 37, 469-72	1.7	85
53	Detection of benzene and other gases with an open-path, static Fourier-transform UV spectrometer. <i>Applied Optics</i> , 1998 , 37, 3172-5	1.7	11
52	Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a wollaston prism. <i>Applied Optics</i> , 1998 , 37, 5777-81	1.7	11
51	Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy. <i>Optics Letters</i> , 1998 , 23, 40-2	3	20

50	Microchip laser-pumped continuous-wave doubly resonant optical parametric oscillator. <i>Optics Letters</i> , 1998 , 23, 517-8	3	9
49	Surface profilometry based on polarization analysis. <i>Optics Letters</i> , 1998 , 23, 1800-2	3	10
48	Optical tweezers with increased axial trapping efficiency. <i>Journal of Modern Optics</i> , 1998 , 45, 1943-1949	91.1	88
47	Open-path UV Fourier-transform gas monitor with no moving parts. <i>Journal of Optics</i> , 1998 , 7, 875-887		
46	An endoscopic system for the early detection of cancers of the gastrointestinal tract. <i>Review of Scientific Instruments</i> , 1998 , 69, 2521-2523	1.7	8
45	Optical tweezers and spanners. <i>Physics World</i> , 1997 , 10, 35-40	0.5	28
44	Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. <i>Physical Review A</i> , 1997 , 56, 4193-4196	2.6	209
43	Wide field of view, ultracompact static Fourier-transform spectrometer. <i>Review of Scientific Instruments</i> , 1997 , 68, 30-33	1.7	8
42	Static Fourier-transform ultraviolet spectrometer for gas detection. <i>Applied Optics</i> , 1997 , 36, 2813-7	1.7	23
41	Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. <i>Optics Letters</i> , 1997 , 22, 52-4	3	784
40	Light-emitting diodes as measurement devices for femtosecond laser pulses. <i>Optics Letters</i> , 1997 , 22, 233-5	3	94
39	Dynamic behaviour of a doubly resonant optical parametric oscillator. <i>Optics Communications</i> , 1997 , 136, 423-428	2	4
38	Gaussian beams with very high orbital angular momentum. <i>Optics Communications</i> , 1997 , 144, 210-213	2	111
37	Design of a static Fourier-transform spectrometer with increased field of view. <i>Applied Optics</i> , 1996 , 35, 6698-702	1.7	33
36	An experiment to observe the intensity and phase structure of Laguerrellaussian laser modes. <i>American Journal of Physics</i> , 1996 , 64, 77-82	0.7	176
35	Second-harmonic generation and the orbital angular momentum of light. <i>Physical Review A</i> , 1996 , 54, R3742-R3745	2.6	269
34	Optical tweezers and optical spanners with Laguerre Gaussian modes. <i>Journal of Modern Optics</i> , 1996 , 43, 2485-2491	1.1	192
33	The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. <i>Optics Communications</i> , 1996 , 127, 183-188	2	295

32	An ultra-compact static Fourier-transform spectrometer based on a single birefringent component. <i>Optics Communications</i> , 1996 , 130, 1-6	2	28
31	Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements. <i>Optics Communications</i> , 1995 , 119, 256-264	2	20
30	The Poynting vector in Laguerre-Gaussian laser modes. <i>Optics Communications</i> , 1995 , 121, 36-40	2	223
29	A static Fourier-transform spectrometer based on Wollaston prisms. <i>Review of Scientific Instruments</i> , 1995 , 66, 2807-2811	1.7	57
28	Doubly resonant optical parametric oscillator formed by index matching cavity mirrors directly onto an uncoated LiB(3)O(5) crystal. <i>Optics Letters</i> , 1995 , 20, 722-4	3	4
27	Continuous frequency tuning of a cw optical parametric oscillator through tuning of its pump source. <i>Optics Letters</i> , 1995 , 20, 1029	3	14
26	A laser for the pocket of Joseph's 'multicoloured' coat. <i>Physics Education</i> , 1994 , 29, 122-126	0.8	
25	A vector approach to the geometrical dependence of polarisation rotation in a non-planar cw Nd:YAG ring laser. <i>Optics Communications</i> , 1994 , 109, 451-456	2	2
24	Stationary Fourier transform spectrometer for use as a teaching tool. <i>American Journal of Physics</i> , 1994 , 62, 1033-1036	0.7	15
23	Continuous-wave singly resonant pump-enhanced type II LiB(3)O(5) optical parametric oscillator. <i>Optics Letters</i> , 1994 , 19, 1735-7	3	30
22	Single-pulse, Fourier-transform spectrometer having no moving parts. <i>Applied Optics</i> , 1994 , 33, 6035-4	0 1.7	45
21	Mode selection in doubly-resonant optical parametric oscillators. <i>IEEE Journal of Quantum Electronics</i> , 1994 , 30, 2979-2985	2	7
20	Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator. <i>Applied Physics Letters</i> , 1994 , 64, 1490-1492	3.4	43
19	Continuous-wave parametric oscillation in lithium triborate. <i>Optics Letters</i> , 1993 , 18, 205	3	33
18	Continuous-wave parametric oscillator pumped in the ultraviolet. <i>Optics Letters</i> , 1993 , 18, 1065	3	20
17	The Cambridge CO2 Laser Saturation Spectrometer. <i>Journal of Modern Optics</i> , 1990 , 37, 737-747	1.1	5
16	Frequency measurements in the 9th spectrum of CF3Br. Infrared Physics, 1990, 30, 279-284		
15	An intensity-stabilised He-Ne laser for measuring small magneto-optic Kerr rotations from thin ferromagnetic films. <i>Journal of Physics E: Scientific Instruments</i> , 1989 , 22, 308-312		36

LIST OF PUBLICATIONS

14	Investigation of the magnetic properties of sandwiched epitaxial Fe and Co films using the magneto-optic Kerr effect. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 4407-4413	1.8	3
13	Laser Frequency Measurement at NPL 1989 , 459-460		
12	Carbon Dioxide Laser Saturation Spectroscopy at kHz Linewidths. <i>Journal of Modern Optics</i> , 1988 , 35, 315-318	1.1	1
11	A simple frequency discriminator circuit for offset locking of lasers. <i>Journal of Physics E: Scientific Instruments</i> , 1988 , 21, 554-557		8
10	An ultra-high-resolution offset-locked carbon dioxide laser spectrometer. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 1352-1358	3	3
9	Measurement of light's orbital angular momentum330-351		2
8	An experimentalist's introduction to orbital angular momentum for quantum optics314-329		
7	The angular momentum of light inside a dielectric		4
6	Optical tweezers and optical spanners with Laguerreffaussian modes		5
5	Optical tweezers with increased axial trapping efficiency		4
4	The production of multiringed Laguerrefaussian modes by computer-generated holograms		21
3	Dove prisms and polarized light		3
2	Helically Phased Beams, and Analogies with Polarization25-35		
1	The Orbital Angular Momentum of Light: An Introduction1-12		8