Miles J Padgett

List of Publications by Citations

Source: https://exaly.com/author-pdf/786244/miles-j-padgett-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

463 176 34,952 94 h-index g-index citations papers 582 43,480 7.63 5.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
463	Orbital angular momentum: origins, behavior and applications. <i>Advances in Optics and Photonics</i> , 2011 , 3, 161	16.7	1687
462	Free-space information transfer using light beams carrying orbital angular momentum. <i>Optics Express</i> , 2004 , 12, 5448-56	3.3	1631
461	Tweezers with a twist. <i>Nature Photonics</i> , 2011 , 5, 343-348	33.9	1159
460	Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. <i>Optics Letters</i> , 1997 , 22, 52-4	3	784
459	Measuring the orbital angular momentum of a single photon. <i>Physical Review Letters</i> , 2002 , 88, 257901	7.4	688
458	Advances in optical angular momentum. Laser and Photonics Reviews, 2008, 2, 299-313	8.3	627
457	IV The Orbital Angular Momentum of Light. <i>Progress in Optics</i> , 1999 , 39, 291-372	3.4	625
456	High-capacity millimetre-wave communications with orbital angular momentum multiplexing. <i>Nature Communications</i> , 2014 , 5, 4876	17.4	623
455	Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. <i>Physical Review Letters</i> , 2002 , 88, 053601	7.4	596
454	Efficient sorting of orbital angular momentum states of light. <i>Physical Review Letters</i> , 2010 , 105, 15360	17.4	573
453	Roadmap on structured light. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 013001	1.7	518
452	Detection of a spinning object using light's orbital angular momentum. Science, 2013, 341, 537-40	33.3	512
451	3D computational imaging with single-pixel detectors. <i>Science</i> , 2013 , 340, 844-7	33.3	488
450	Optical Angular Momentum 2003 ,		456
449	Light Orbital Angular Momentum. <i>Physics Today</i> , 2004 , 57, 35-40	0.9	427
448	Chapter 5 Singular Optics: Optical Vortices and Polarization Singularities. <i>Progress in Optics</i> , 2009 , 53, 293-363	3.4	425
447	Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. <i>Nature Physics</i> , 2011 , 7, 677-680	16.2	408

446	Quantum correlations in optical angle-orbital angular momentum variables. <i>Science</i> , 2010 , 329, 662-5	33.3	367
445	Orbital angular momentum 25 years on [Invited]. Optics Express, 2017, 25, 11265-11274	3.3	356
444	High-dimensional quantum cryptography with twisted light. New Journal of Physics, 2015, 17, 033033	2.9	335
443	Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. <i>Optics Letters</i> , 2000 , 25, 191-3	3	320
442	100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. <i>Optics Letters</i> , 2014 , 39, 197-200	3	309
441	The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. <i>Optics Communications</i> , 1996 , 127, 183-188	2	295
440	Lights, action: Optical tweezers. <i>Contemporary Physics</i> , 2002 , 43, 241-258	3.3	286
439	Isolated optical vortex knots. <i>Nature Physics</i> , 2010 , 6, 118-121	16.2	281
438	Second-harmonic generation and the orbital angular momentum of light. <i>Physical Review A</i> , 1996 , 54, R3742-R3745	2.6	269
437	Single-pixel three-dimensional imaging with time-based depth resolution. <i>Nature Communications</i> , 2016 , 7, 12010	17.4	261
436	PoincarEsphere equivalent for light beams containing orbital angular momentum. <i>Optics Letters</i> , 1999 , 24, 430-2	3	258
435	Observation of the vortex structure of a non-integer vortex beam. <i>New Journal of Physics</i> , 2004 , 6, 71-7	71 2.9	254
434	Principles and prospects for single-pixel imaging. <i>Nature Photonics</i> , 2019 , 13, 13-20	33.9	232
433	Optical ferris wheel for ultracold atoms. <i>Optics Express</i> , 2007 , 15, 8619-25	3.3	229
432	Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. <i>Physical Review Letters</i> , 2004 , 92, 013601	7.4	225
431	Imaging with a small number of photons. <i>Nature Communications</i> , 2015 , 6, 5913	17.4	224
430	Rotational Frequency Shift of a Light Beam. <i>Physical Review Letters</i> , 1998 , 81, 4828-4830	7.4	223
429	The Poynting vector in Laguerre-Gaussian laser modes. <i>Optics Communications</i> , 1995 , 121, 36-40	2	223

428	Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. <i>Science Advances</i> , 2016 , 2, e1600190	14.3	217
427	Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. <i>Physical Review Letters</i> , 2003 , 91, 093602	7.4	216
426	Normalized ghost imaging. <i>Optics Express</i> , 2012 , 20, 16892	3.3	213
425	The production of multiringed Laguerrelaussian modes by computer-generated holograms. <i>Journal of Modern Optics</i> , 1998 , 45, 1231-1237	1.1	213
424	Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. <i>Physical Review A</i> , 1997 , 56, 4193-4196	2.6	209
423	Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. <i>Optics Express</i> , 2012 , 20, 13195-200	3.3	206
422	Single-pixel infrared and visible microscope. <i>Optica</i> , 2014 , 1, 285	8.6	200
421	Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. <i>Physical Review A</i> , 2013 , 88,	2.6	193
420	Optical tweezers and optical spanners with Laguerre Laussian modes. <i>Journal of Modern Optics</i> , 1996 , 43, 2485-2491	1.1	192
419	Optical trapping and binding. <i>Reports on Progress in Physics</i> , 2013 , 76, 026401	14.4	191
418	Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum. <i>Physical Review Letters</i> , 1998 , 80, 3217-3219	7.4	191
417	An experiment to observe the intensity and phase structure of Laguerrelaussian laser modes. <i>American Journal of Physics</i> , 1996 , 64, 77-82	0.7	176
416	Simultaneous real-time visible and infrared video with single-pixel detectors. <i>Scientific Reports</i> , 2015 , 5, 10669	4.9	169
415	Vortex knots in light. <i>New Journal of Physics</i> , 2005 , 7, 55-55	2.9	168
414	Holographic optical tweezers and their relevance to lab on chip devices. <i>Lab on A Chip</i> , 2011 , 11, 1196-2	20/52	166
413	The Poynting vector in Laguerre L aussian beams and the interpretation of their angular momentum density. <i>Optics Communications</i> , 2000 , 184, 67-71	2	165
412	Refractive elements for the measurement of the orbital angular momentum of a single photon. <i>Optics Express</i> , 2012 , 20, 2110-5	3.3	161
411	Laser beams: knotted threads of darkness. <i>Nature</i> , 2004 , 432, 165		160

(2017-2008)

410	Light beams with fractional orbital angular momentum and their vortex structure. <i>Optics Express</i> , 2008 , 16, 993-1006	3.3	159
409	Uncertainty principle for angular position and angular momentum. New Journal of Physics, 2004, 6, 103	-1103	158
408	Light with a twist in its tail. Contemporary Physics, 2000, 41, 275-285	3.3	158
407	Fast full-color computational imaging with single-pixel detectors. <i>Optics Express</i> , 2013 , 21, 23068-74	3.3	156
406	Divergence of an orbital-angular-momentum-carrying beam upon propagation. <i>New Journal of Physics</i> , 2015 , 17, 023011	2.9	154
405	Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. <i>Optics Letters</i> , 2013 , 38, 4062-5	3	154
404	3D manipulation of particles into crystal structures using holographic optical tweezers. <i>Optics Express</i> , 2004 , 12, 220-6	3.3	153
403	Imaging high-dimensional spatial entanglement with a camera. Nature Communications, 2012, 3, 984	17.4	150
402	Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. <i>Optics Express</i> , 2008 , 16, 14561-70	3.3	150
401	Two-photon entanglement of orbital angular momentum states. <i>Physical Review A</i> , 2002 , 65,	2.6	149
400	An optically driven pump for microfluidics. Lab on A Chip, 2006, 6, 735-9	7.2	148
399	Direct measurement of a 27-dimensional orbital-angular-momentum state vector. <i>Nature Communications</i> , 2014 , 5, 3115	17.4	145
398	Influence of atmospheric turbulence on states of light carrying orbital angular momentum. <i>Optics Letters</i> , 2012 , 37, 3735-7	3	139
397	Holographic ghost imaging and the violation of a Bell inequality. <i>Physical Review Letters</i> , 2009 , 103, 083	36,02	134
396	Topology of optical vortex lines formed by the interference of three, four, and five plane waves. <i>Optics Express</i> , 2006 , 14, 3039-44	3.3	133
395	Performance of a cylindrical lens mode converter for producing Laguerre L aussian laser modes. <i>Optics Communications</i> , 1999 , 159, 13-18	2	128
394	Assembly of 3-dimensional structures using programmable holographic optical tweezers. <i>Optics Express</i> , 2004 , 12, 5475-80	3.3	123
393	Adaptive foveated single-pixel imaging with dynamic supersampling. <i>Science Advances</i> , 2017 , 3, e16017	824.3	122

392	Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. <i>Optics Express</i> , 2009 , 17, 8287-93	3.3	120
391	Spin-orbit hybrid entanglement of photons and quantum contextuality. <i>Physical Review A</i> , 2010 , 82,	2.6	119
390	Development of a 3D printer using scanning projection stereolithography. <i>Scientific Reports</i> , 2015 , 5, 9875	4.9	117
389	A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging. <i>Scientific Reports</i> , 2017 , 7, 3464	4.9	117
388	Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. <i>Nature Communications</i> , 2014 , 5, 4502	17.4	116
387	H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 1861-1871	5.5	116
386	Real-time imaging of methane gas leaks using a single-pixel camera. <i>Optics Express</i> , 2017 , 25, 2998-3005	53.3	111
385	Gaussian beams with very high orbital angular momentum. <i>Optics Communications</i> , 1997 , 144, 210-213	2	111
384	Fourier relationship between angular position and optical orbital angular momentum. <i>Optics Express</i> , 2006 , 14, 9071-6	3.3	109
383	Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. <i>Optics Express</i> , 2016 , 24, 10476-85	3.3	107
382	Deep learning for real-time single-pixel video. Scientific Reports, 2018, 8, 2369	4.9	106
381	Interactive approach to optical tweezers control. <i>Applied Optics</i> , 2006 , 45, 897-903	1.7	106
380	Comparison of Faxfi's correction for a microsphere translating or rotating near a surface. <i>Physical Review E</i> , 2009 , 79, 026301	2.4	104
379	Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. <i>Optics Express</i> , 2004 , 12, 1665-70	3.3	102
378	Holographic generation and orbital angular momentum of high-order Mathieu beams. <i>Journal of Optics B: Quantum and Semiclassical Optics</i> , 2002 , 4, S52-S57		102
377	Microrheology with optical tweezers. <i>Lab on A Chip</i> , 2009 , 9, 2568-75	7.2	100
376	An introduction to ghost imaging: quantum and classical. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	99
375	Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. <i>Optics Communications</i> , 2000 , 185, 139-1	43	99

(2017-2003)

374	Optically controlled three-dimensional rotation of microscopic objects. <i>Applied Physics Letters</i> , 2003 , 82, 829-831	3.4	97	
373	Direct measurement of the skew angle of the Poynting vector in a helically phased beam. <i>Optics Express</i> , 2006 , 14, 11919-24	3.3	96	
372	Shape-induced force fields in optical trapping. <i>Nature Photonics</i> , 2014 , 8, 400-405	33.9	95	
371	Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. <i>Optics Letters</i> , 2014 , 39, 2845-8	3	95	
370	1000 fps computational ghost imaging using LED-based structured illumination. <i>Optics Express</i> , 2018 , 26, 2427-2434	3.3	94	
369	Light-emitting diodes as measurement devices for femtosecond laser pulses. <i>Optics Letters</i> , 1997 , 22, 233-5	3	94	
368	The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. <i>Optics Communications</i> , 1999 , 170, 213-215	2	94	
367	Angular diffraction. New Journal of Physics, 2008, 10, 103013	2.9	92	
366	Rotational control within optical tweezers by use of a rotating aperture. <i>Optics Letters</i> , 2002 , 27, 743-5	3	91	
365	Optics. Spatially structured photons that travel in free space slower than the speed of light. <i>Science</i> , 2015 , 347, 857-60	33.3	90	
364	Self-healing of quantum entanglement after an obstruction. <i>Nature Communications</i> , 2014 , 5, 3248	17.4	90	
363	Axial and lateral trapping efficiency of Laguerrellaussian modes in inverted optical tweezers. <i>Optics Communications</i> , 2001 , 193, 45-50	2	90	
362	An acoustic spanner and its associated rotational Doppler shift. New Journal of Physics, 2008, 10, 01301	& .9	89	
361	Polarization singularities in 2D and 3D speckle fields. <i>Physical Review Letters</i> , 2008 , 100, 203902	7.4	89	
360	3D interferometric optical tweezers using a single spatial light modulator. <i>Optics Express</i> , 2005 , 13, 377	73896	88	
359	Optical tweezers with increased axial trapping efficiency. <i>Journal of Modern Optics</i> , 1998 , 45, 1943-1949	91.1	88	
358	EPR-based ghost imaging using a single-photon-sensitive camera. New Journal of Physics, 2013, 15, 073	032)	87	
357	Free-space propagation of high-dimensional structured optical fields in an urban environment. <i>Science Advances</i> , 2017 , 3, e1700552	14.3	86	

356	Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. <i>Applied Optics</i> , 1998 , 37, 469-72	1.7	85
355	Parametric down-conversion for light beams possessing orbital angular momentum. <i>Physical Review A</i> , 1999 , 59, 3950-3952	2.6	84
354	Compressed sensing with near-field THz radiation. <i>Optica</i> , 2017 , 4, 989	8.6	82
353	Entangled Bessel-Gaussian beams. <i>Optics Express</i> , 2012 , 20, 23589-97	3.3	82
352	Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. <i>Optica</i> , 2014 , 1, 1	8.6	80
351	High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. <i>Applied Surface Science</i> , 2008 , 255, 2284-2289	6.7	80
350	Rotary photon drag enhanced by a slow-light medium. <i>Science</i> , 2011 , 333, 65-7	33.3	79
349	Single-pixel imaging 12 years on: a review. <i>Optics Express</i> , 2020 , 28, 28190-28208	3.3	79
348	Imaging with quantum states of light. Nature Reviews Physics, 2019, 1, 367-380	23.6	78
347	On the natures of the spin and orbital parts of optical angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 064004	1.7	78
346	An improved algorithm for locating a gas source using inverse methods. <i>Atmospheric Environment</i> , 2007 , 41, 1128-1134	5.3	77
345	Generation of achromatic Bessel beams using a compensated spatial light modulator. <i>Optics Express</i> , 2006 , 14, 5581-7	3.3	75
344	Photon-sparse microscopy: visible light imaging using infrared illumination. <i>Optica</i> , 2015 , 2, 1049	8.6	74
343	Speeding up liquid crystal SLMs using overdrive with phase change reduction. <i>Optics Express</i> , 2013 , 21, 1779-97	3.3	74
342	Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 064006	1.7	74
341	Ghost Imaging Using Optical Correlations. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700143	8.3	74
340	Observation of chromatic effects near a white-light vortex. New Journal of Physics, 2003, 5, 154-154	2.9	73
339	Fractality of light's darkness. <i>Physical Review Letters</i> , 2008 , 100, 053902	7.4	72

338	Quantum-inspired computational imaging. <i>Science</i> , 2018 , 361,	33.3	71
337	Exploring the quantum nature of the radial degree of freedom of a photon via Hong-Ou-Mandel interference. <i>Physical Review A</i> , 2014 , 89,	2.6	70
336	Particle tracking stereomicroscopy in optical tweezers: control of trap shape. <i>Optics Express</i> , 2010 , 18, 11785-90	3.3	70
335	Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers. <i>Journal of Optics</i> , 2007 , 9, S264-S266		69
334	Aberration correction in holographic optical tweezers. <i>Optics Express</i> , 2006 , 14, 4169-74	3.3	68
333	Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. <i>Lab on A Chip</i> , 2005 , 5, 1224-8	7.2	67
332	Optical activity in twisted solid-core photonic crystal fibers. <i>Physical Review Letters</i> , 2013 , 110, 143903	7.4	66
331	Orbital angular momentum exchange in cylindrical-lens mode converters. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2002 , 4, S17-S19		66
330	Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. <i>Physical Review A</i> , 2012 , 86,	2.6	65
329	High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. <i>Optics Express</i> , 2016 , 24, 29269-29282	3.3	65
328	Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. <i>Light: Science and Applications</i> , 2018 , 7, 17156	16.7	64
327	Precision assembly of complex cellular microenvironments using holographic optical tweezers. <i>Scientific Reports</i> , 2015 , 5, 8577	4.9	64
326	Characterization of high-dimensional entangled systems via mutually unbiased measurements. <i>Physical Review Letters</i> , 2013 , 110, 143601	7.4	64
325	Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	64
324	Limitations to the determination of a LaguerreLauss spectrum via projective, phase-flattening measurement. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, A20	1.7	62
323	Red Tweezers [Fast, customisable hologram generation for optical tweezers. <i>Computer Physics Communications</i> , 2014 , 185, 268-273	4.2	60
322	Precise quantum tomography of photon pairs with entangled orbital angular momentum. <i>New Journal of Physics</i> , 2009 , 11, 103024	2.9	60
321	Increasing trap stiffness with position clamping in holographic optical tweezers. <i>Optics Express</i> , 2009 , 17, 22718-25	3.3	60

320	Three-dimensional parallel holographic micropatterning using a spatial light modulator. <i>Optics Express</i> , 2008 , 16, 15942-8	3.3	59
319	Surface imaging using holographic optical tweezers. <i>Nanotechnology</i> , 2011 , 22, 285503	3.4	58
318	Touching the microworld with force-feedback optical tweezers. <i>Optics Express</i> , 2009 , 17, 10259-64	3.3	57
317	Defining the trapping limits of holographical optical tweezers. <i>Journal of Modern Optics</i> , 2004 , 51, 409-	414	57
316	A static Fourier-transform spectrometer based on Wollaston prisms. <i>Review of Scientific Instruments</i> , 1995 , 66, 2807-2811	1.7	57
315	Optical orbital angular momentum. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	56
314	Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states. <i>New Journal of Physics</i> , 2013 , 15, 013024	2.9	56
313	Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces. <i>Physical Review A</i> , 2010 , 81,	2.6	54
312	An optically actuated surface scanning probe. <i>Optics Express</i> , 2012 , 20, 29679-93	3.3	54
311	Multipoint holographic optical velocimetry in microfluidic systems. <i>Physical Review Letters</i> , 2006 , 96, 134502	7.4	54
310	Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. <i>Optics Express</i> , 2017 , 25, 29874-29884	3.3	53
309	An optical trapped microhand for manipulating micron-sized objects. <i>Optics Express</i> , 2006 , 14, 12497-50	023.3	53
308	Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. <i>Respiratory Medicine</i> , 2006 , 100, 300-6	4.6	53
307	Sharing a Common Origin Between the Rotational and Linear Doppler Effects. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700183	8.3	52
306	Measuring the orbital angular momentum spectrum of an electron beam. <i>Nature Communications</i> , 2017 , 8, 15536	17.4	51
305	Measuring storage and loss moduli using optical tweezers: broadband microrheology. <i>Physical Review E</i> , 2010 , 81, 026308	2.4	51
304	Dove prisms and polarized light. <i>Journal of Modern Optics</i> , 1999 , 46, 175-179	1.1	51
303	Matrix formulation for the propagation of light beams with orbital and spin angular momenta. <i>Physical Review E</i> , 1999 , 60, 7497-503	2.4	51

302	Concepts in quantum state tomography and classical implementation with intense light: a tutorial. <i>Advances in Optics and Photonics</i> , 2019 , 11, 67	16.7	51
301	Parametric resonance of optically trapped aerosols. <i>Physical Review Letters</i> , 2007 , 99, 010601	7.4	50
300	Measuring orbital angular momentum superpositions of light by mode transformation. <i>Optics Letters</i> , 2011 , 36, 1863-5	3	49
299	Mathieu beams as versatile light moulds for 3D micro particle assemblies. <i>Optics Express</i> , 2010 , 18, 260	8 4.9 1	49
298	Efficient sorting of Bessel beams. <i>Optics Express</i> , 2013 , 21, 165-71	3.3	48
297	An SLM-based ShackHartmann wavefront sensor for aberration correction in optical tweezers. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 124004	1.7	48
296	The angular momentum of light inside a dielectric. Journal of Modern Optics, 2003, 50, 1555-1562	1.1	48
295	Topology of light's darkness. <i>Physical Review Letters</i> , 2009 , 102, 143902	7.4	47
294	Single-pulse, Fourier-transform spectrometer having no moving parts. <i>Applied Optics</i> , 1994 , 33, 6035-40	0 1.7	45
293	Optical tweezers: wideband microrheology. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 044022	1.7	44
292	Observation of quantum entanglement using spatial light modulators. <i>Optics Express</i> , 2006 , 14, 13089-	9 4 j.3	44
291	Entangled optical vortex links. <i>Physical Review Letters</i> , 2011 , 106, 100407	7.4	43
290	Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. <i>Optics Communications</i> , 2000 , 173, 269-274	2	43
289	Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator. <i>Applied Physics Letters</i> , 1994 , 64, 1490-1492	3.4	43
288	Fourier relationship between the angle and angular momentum of entangled photons. <i>Physical Review A</i> , 2008 , 78,	2.6	42
287	Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors. <i>Lab on A Chip</i> , 2006 , 6, 788-93	7.2	41
286	Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation. <i>Optics Letters</i> , 2006 , 31, 2205-7	3	40
285	Efficiency of second-harmonic generation with Bessel beams. <i>Physical Review A</i> , 1999 , 60, 2438-2441	2.6	40

284	3D single-pixel video. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 035203	1.7	40
283	Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. <i>Optics Express</i> , 2009 , 17, 3595-602	3.3	39
282	Assembly and force measurement with SPM-like probes in holographic optical tweezers. <i>New Journal of Physics</i> , 2009 , 11, 023012	2.9	38
281	Simplified measurement of the orbital angular momentum of single photons. <i>Optics Communications</i> , 2003 , 223, 117-122	2	38
280	Imaging through noise with quantum illumination. Science Advances, 2020, 6, eaay2652	14.3	37
279	Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. <i>Physical Review E</i> , 2007 , 76, 061402	2.4	37
278	Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles. <i>Physical Review A</i> , 2014 , 90,	2.6	36
277	Hydrodynamic interactions in two dimensions. <i>Physical Review E</i> , 2008 , 78, 031406	2.4	36
276	An intensity-stabilised He-Ne laser for measuring small magneto-optic Kerr rotations from thin ferromagnetic films. <i>Journal of Physics E: Scientific Instruments</i> , 1989 , 22, 308-312		36
275	Near video-rate linear Stokes imaging with single-pixel detectors. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 025705	1.7	35
274	Robust interferometer for the routing of light beams carrying orbital angular momentum. <i>New Journal of Physics</i> , 2011 , 13, 093014	2.9	35
273	Holographic assembly workstation for optical manipulation. <i>Journal of Optics</i> , 2008 , 10, 044009		35
272	Aberration correction in holographic optical tweezers. <i>Optics Express</i> , 2006 , 14, 4170-5	3.3	35
271	Force sensing with a shaped dielectric micro-tool. <i>Europhysics Letters</i> , 2012 , 99, 58004	1.6	34
270	Characteristics of 5-aminolaevulinic acid-induced protoporphyrin IX fluorescence in human skin in vivo. <i>Photodermatology Photoimmunology and Photomedicine</i> , 2006 , 22, 105-10	2.4	34
269	Design of a static Fourier-transform spectrometer with increased field of view. <i>Applied Optics</i> , 1996 , 35, 6698-702	1.7	33
268	Continuous-wave parametric oscillation in lithium triborate. <i>Optics Letters</i> , 1993 , 18, 205	3	33
267	Independent polarisation control of multiple optical traps. <i>Optics Express</i> , 2008 , 16, 15897-902	3.3	32

(2011-2003)

266	Treatment of grade III anal intraepithelial neoplasia with photodynamic therapy: report of a case. <i>Diseases of the Colon and Rectum</i> , 2003 , 46, 1555-9	3.1	32
265	Two-photon optics of Bessel-Gaussian modes. <i>Physical Review A</i> , 2013 , 88,	2.6	31
264	Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers. <i>Optics Express</i> , 2008 , 16, 13005-15	3.3	31
263	An open-path, hand-held laser system for the detection of methane gas. <i>Journal of Optics</i> , 2005 , 7, S420	-S424	31
262	Optically Induced Forces Imposed in an Optical Funnel on a Stream of Particles in Air or Vacuum. <i>Physical Review Applied</i> , 2015 , 4,	4.3	30
261	The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera. <i>Optics Express</i> , 2013 , 21, 30460-73	3.3	30
260	Angular two-photon interference and angular two-qubit states. <i>Physical Review Letters</i> , 2010 , 104, 0105	9 14	30
259	Equivalent geometric transformations for spin and orbital angular momentum of light. <i>Journal of Modern Optics</i> , 2007 , 54, 487-491	1.1	30
258	Aberrations introduced by a lens made from a birefringent material. <i>Applied Optics</i> , 2000 , 39, 592-8	1.7	30
257	The angular momentum of light: optical spanners and the rotational frequency shift. <i>Optical and Quantum Electronics</i> , 1999 , 31, 1-12	2.4	30
256	Continuous-wave singly resonant pump-enhanced type II LiB(3)O(5) optical parametric oscillator. <i>Optics Letters</i> , 1994 , 19, 1735-7	3	30
255	Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging. <i>Biomedical Optics Express</i> , 2016 , 7, 2993-3006	3.5	29
254	Resolution limits of quantum ghost imaging. Optics Express, 2018, 26, 7528-7536	3.3	29
253	"Aether drag" and moving images. <i>Physical Review Letters</i> , 2008 , 100, 153902	7.4	29
252	Permanent 3D microstructures in a polymeric host created using holographic optical tweezers. Journal of Modern Optics, 2004 , 51, 627-632	1.1	29
251	The Application of a Compact Multispectral Imaging System with Integrated Excitation Source to In vivo Monitoring of Fluorescence During Topical Photodynamic Therapy of Superficial Skin Cancers¶. <i>Photochemistry and Photobiology</i> , 2001 , 73, 278-282	3.6	29
250	Continuous-wave optical parametric oscillator based on periodically poled KTiOPO(4) and its application to spectroscopy. <i>Optics Letters</i> , 1999 , 24, 397-9	3	29
249	Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 044023	1.7	28

248	Optical tweezers and spanners. <i>Physics World</i> , 1997 , 10, 35-40	0.5	28
247	An ultra-compact static Fourier-transform spectrometer based on a single birefringent component. <i>Optics Communications</i> , 1996 , 130, 1-6	2	28
246	Comparing the information capacity of Laguerre-Gaussian and Hermite-Gaussian modal sets in a finite-aperture system. <i>Optics Express</i> , 2016 , 24, 27127-27136	3.3	28
245	Light's twist. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20140633	2.4	27
244	Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 149-158	2.3	27
243	iTweezers: optical micromanipulation controlled by an Apple iPad. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 044002	1.7	27
242	II wisted Lelectrons. Contemporary Physics, 2018, 59, 126-144	3.3	26
241	Generalized photon sieves: fine control of complex fields with simple pinhole arrays. <i>Optica</i> , 2015 , 2, 1028	8.6	26
240	Position clamping of optically trapped microscopic non-spherical probes. <i>Optics Express</i> , 2011 , 19, 2062	2373	26
239	Efficient generation of Bessel beam arrays by means of an SLM. <i>European Physical Journal: Special Topics</i> , 2011 , 199, 159-166	2.3	26
238	Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers. Journal of Optics (United Kingdom), 2011 , 13, 044003	1.7	26
237	Violation of Leggett inequalities in orbital angular momentum subspaces. <i>New Journal of Physics</i> , 2010 , 12, 123007	2.9	26
236	Portable optical spectroscopy for accurate analysis of ethane in exhaled breath. <i>Measurement Science and Technology</i> , 2007 , 18, 1459-1464	2	26
235	In vivo measurement of 5-aminolaevulinic acid-induced protoporphyrin IX photobleaching: a comparison of red and blue light of various intensities. <i>Photodermatology Photoimmunology and Photomedicine</i> , 2004 , 20, 170-4	2.4	26
234	Video recording true single-photon double-slit interference. American Journal of Physics, 2016, 84, 671-	-6 <i>3.7</i> y	26
233	DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples. <i>Optics Express</i> , 2016 , 24, 12701-12	3.3	25
232	Coherent Absorption of N00N States. <i>Physical Review Letters</i> , 2016 , 117, 023601	7.4	25
231	Imaging Bell-type nonlocal behavior. <i>Science Advances</i> , 2019 , 5, eaaw2563	14.3	25

(2007-2009)

230	Multipoint viscosity measurements in microfluidic channels using optical tweezers. <i>Lab on A Chip</i> , 2009 , 9, 2059-62	7.2	25	
229	Directed assembly of inorganic polyoxometalate-based micrometer-scale tubular architectures by using optical control. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12754-8	16.4	24	
228	Transfer of orbital angular momentum from a super-continuum, white-light beam. <i>Optics Express</i> , 2008 , 16, 9495-500	3.3	24	
227	Minimum uncertainty states of angular momentum and angular position. <i>New Journal of Physics</i> , 2005 , 7, 62-62	2.9	24	
226	Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. <i>Optics Express</i> , 2006 , 14, 222-8	3.3	24	
225	Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators. <i>Physical Review Letters</i> , 2000 , 85, 5320-3	7.4	24	
224	A fast 3D reconstruction system with a low-cost camera accessory. <i>Scientific Reports</i> , 2015 , 5, 10909	4.9	23	
223	Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 085401	1.7	23	
222	Position clamping in a holographic counterpropagating optical trap. <i>Optics Express</i> , 2011 , 19, 9908-14	3.3	23	
221	Static Fourier-transform ultraviolet spectrometer for gas detection. <i>Applied Optics</i> , 1997 , 36, 2813-7	1.7	23	
220	Resolution-enhanced quantum imaging by centroid estimation of biphotons. <i>Optica</i> , 2019 , 6, 347	8.6	23	
219	Non-diffractive computational ghost imaging. <i>Optics Express</i> , 2016 , 24, 14172-82	3.3	22	
218	Generation of Caustics and Rogue Waves from Nonlinear Instability. <i>Physical Review Letters</i> , 2017 , 119, 203901	7.4	22	
217	A multi-modal stereo microscope based on a spatial light modulator. <i>Optics Express</i> , 2013 , 21, 16541-51	3.3	22	
216	Optically trapped and driven paddle-wheel. New Journal of Physics, 2013, 15, 063016	2.9	22	
215	Calibration of optically trapped nanotools. <i>Nanotechnology</i> , 2010 , 21, 175501	3.4	22	
214	A compact holographic optical tweezers instrument. Review of Scientific Instruments, 2012, 83, 113107	1.7	22	
213	On the dragging of light by a rotating medium. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2007 , 463, 2185-2194	2.4	22	

212	Development of high-resolution real-time sub-ppb ethane spectroscopy and some pilot studies in life science. <i>Applied Optics</i> , 2005 , 44, 4712-21	1.7	22
211	Deep learning optimized single-pixel LiDAR. <i>Applied Physics Letters</i> , 2019 , 115, 231101	3.4	22
210	Partial synchronization of stochastic oscillators through hydrodynamic coupling. <i>Physical Review Letters</i> , 2012 , 108, 240601	7.4	21
209	The production of multiringed LaguerreCaussian modes by computer-generated holograms		21
208	Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam. <i>Physical Review Letters</i> , 2016 , 117, 154801	7.4	21
207	Optical angular momentum in a rotating frame. <i>Optics Letters</i> , 2014 , 39, 2944-6	3	20
206	The mechanism for energy transfer in the rotational frequency shift of a light beam. <i>Journal of Optics</i> , 2004 , 6, S263-S265		20
205	Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy. <i>Optics Letters</i> , 1998 , 23, 40-2	3	20
204	Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements. <i>Optics Communications</i> , 1995 , 119, 256-264	2	20
203	Continuous-wave parametric oscillator pumped in the ultraviolet. <i>Optics Letters</i> , 1993 , 18, 1065	3	20
202	Polarisation structuring of broadband light. Optics Express, 2017, 25, 25079-25089	3.3	19
201	On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum. <i>Optics Express</i> , 2008 , 16, 20864-8	3.3	19
200	Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. <i>Journal of Breath Research</i> , 2007 , 1, 026005	3.1	19
199	Entanglement of orbital angular momentum for the signal and idler beams in parametric down-conversion. <i>Journal of Modern Optics</i> , 2002 , 49, 777-785	1.1	19
198	Preface: Optical tweezers in a new light. <i>Journal of Modern Optics</i> , 2003 , 50, 1501-1507	1.1	19
197	Reversal of orbital angular momentum arising from an extreme Doppler shift. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3800-3803	11.5	18
196	3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers. <i>Analytical Chemistry</i> , 2008 , 80, 4237-40	7.8	18
195	Increasing the data density of free-space optical communications using orbital angular momentum 2004 , 5550, 367		18

(2004-2005)

194	Effect of maximal dynamic exercise on exhaled ethane and carbon monoxide levels in human, equine, and canine athletes. <i>Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology</i> , 2005 , 141, 239-46	2.6	18	
193	The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy. <i>Journal of Optics</i> , 2005 , 7, S376-S384		18	
192	Amplification of waves from a rotating body. <i>Nature Physics</i> , 2020 , 16, 1069-1073	16.2	17	
191	Dynamic stereo microscopy for studying particle sedimentation. <i>Optics Express</i> , 2014 , 22, 4671-7	3.3	17	
190	Imaging of methane gas using a scanning, open-path laser system. New Journal of Physics, 2006, 8, 26-20	6 2.9	17	
189	The effect of external forces on discrete motion within holographic optical tweezers. <i>Optics Express</i> , 2007 , 15, 18268-74	3.3	17	
188	Red microchip VECSEL array. <i>Optics Express</i> , 2005 , 13, 7209-14	3.3	17	
187	Photodynamic therapy in dermatology: Dundee clinical and research experience. <i>Photodiagnosis and Photodynamic Therapy</i> , 2004 , 1, 211-23	3.5	17	
186	Optical tweezers in a new light. <i>Journal of Modern Optics</i> , 2003 , 50, 1501-1507	1.1	17	
185	Heralded phase-contrast imaging using an orbital angular momentum phase-filter. <i>Journal of Optics</i> (United Kingdom), 2016 , 18, 055204	1.7	17	
184	Discrete emitters as a source of orbital angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 045608	1.7	16	
183	Optical trapping at gigapascal pressures. <i>Physical Review Letters</i> , 2013 , 110, 095902	7.4	16	
182	100 Tbit/s Free-Space Data Link using Orbital Angular Momentum Mode Division Multiplexing Combined with Wavelength Division Multiplexing 2013 ,		16	
181	Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample. <i>Optics Express</i> , 2011 , 19, 24589-95	3.3	16	
180	Optically controlled grippers for manipulating micron-sized particles. <i>New Journal of Physics</i> , 2007 , 9, 14-14	2.9	16	
179	Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. <i>Optics Express</i> , 2005 , 13, 4148-53	3.3	16	
178	Illustrations of optical vortices in three dimensions. <i>Journal of the European Optical Society-Rapid Publications</i> , 2006 , 1,	2.5	16	
177	Visual observations of SERRS from single silver-coated silica microparticles within optical tweezers. Angewandte Chemie - International Edition, 2004, 43, 2512-4	16.4	16	

176	Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. <i>Optics Express</i> , 2018 , 26, 25211-25225	3.3	16
175	Tailored two-photon correlation and fair-sampling: a cautionary tale. <i>New Journal of Physics</i> , 2013 , 15, 083047	2.9	15
174	Optimizing the use of detector arrays for measuring intensity correlations of photon pairs. <i>Physical Review A</i> , 2013 , 88,	2.6	15
173	Methodology for imaging the 3D structure of singularities in scalar and vector optical fields. <i>Journal of Optics</i> , 2009 , 11, 094020		15
172	Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	15
171	Stationary Fourier transform spectrometer for use as a teaching tool. <i>American Journal of Physics</i> , 1994 , 62, 1033-1036	0.7	15
170	Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems. <i>European Physical Journal D</i> , 2012 , 66, 1	1.3	14
169	Tunable orbital angular momentum mode filter based on optical geometric transformation. <i>Optics Letters</i> , 2014 , 39, 1689-92	3	14
168	Quantum correlations in position, momentum, and intermediate bases for a full optical field of view. <i>Physical Review A</i> , 2012 , 85,	2.6	14
167	High-dimensional quantum nature of ghost angular Young diffraction. <i>Physical Review A</i> , 2010 , 82,	2.6	14
166	Three-dimensional optical trapping of partially silvered silica microparticles. <i>Optics Letters</i> , 2004 , 29, 2488-90	3	14
165	Continuous frequency tuning of a cw optical parametric oscillator through tuning of its pump source. <i>Optics Letters</i> , 1995 , 20, 1029	3	14
164	Image reconstruction from photon sparse data. Scientific Reports, 2017, 7, 42164	4.9	13
163	How fast is a twisted photon?. <i>Optica</i> , 2018 , 5, 682	8.6	13
162	Experimental investigation of the transient dynamics of slow light in ruby. <i>New Journal of Physics</i> , 2014 , 16, 123054	2.9	13
161	Knotted and tangled threads of darkness in light beams. <i>Contemporary Physics</i> , 2011 , 52, 265-279	3.3	13
160	Determining the dimensionality of bipartite orbital-angular-momentum entanglement using multi-sector phase masks. <i>New Journal of Physics</i> , 2012 , 14, 073046	2.9	13
159	A versatile quantum walk resonator with bright classical light. <i>PLoS ONE</i> , 2019 , 14, e0214891	3.7	12

(2017-2019)

158	A High-Speed, Wavelength Invariant, Single-Pixel Wavefront Sensor With a Digital Micromirror Device. <i>IEEE Access</i> , 2019 , 7, 85860-85866	3.5	12
157	Experimental demonstration of Klyshkoll advanced-wave picture using a coincidence-count based, camera-enabled imaging system. <i>Journal of Modern Optics</i> , 2014 , 61, 547-551	1.1	12
156	A new twist on the Doppler shift. <i>Physics Today</i> , 2014 , 67, 58-59	0.9	12
155	Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell-cell approach. <i>Current Microbiology</i> , 2014 , 69, 669-74	2.4	12
154	Experimental demonstration of 16 Gbit/s millimeter-wave communications using MIMO processing of 2 OAM modes on each of two transmitter/receiver antenna apertures 2014 ,		12
153	Optical tweezers: a light touch. <i>Journal of Microscopy</i> , 2012 , 248, 219-22	1.9	12
152	Reconfigurable orbital angular momentum and polarization manipulation of 100 Gbit/s QPSK data channels. <i>Optics Letters</i> , 2013 , 38, 5240-3	3	12
151	Demonstration of the angular uncertainty principle for single photons. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 064017	1.7	12
150	Classic-fractal eigenmodes of unstable canonical resonators. <i>Optics Communications</i> , 2003 , 223, 17-23	2	12
149	A field-portable, laser-diode spectrometer for the ultra-sensitive detection of hydrocarbon gases. <i>Journal of Modern Optics</i> , 2002 , 49, 769-776	1.1	12
148	Fluorescence detection of superficial skin cancers. <i>Journal of Modern Optics</i> , 2000 , 47, 2021-2027	1.1	12
147	A Bayesian Approach to Denoising of Single-Photon Binary Images. <i>IEEE Transactions on Computational Imaging</i> , 2017 , 3, 460-471	4.5	11
146	Photon Bunching in a Rotating Reference Frame. <i>Physical Review Letters</i> , 2019 , 123, 110401	7.4	11
145	Evidence of slow-light effects from rotary drag of structured beams. <i>New Journal of Physics</i> , 2013 , 15, 083020	2.9	11
144	Sub-shot-noise shadow sensing with quantum correlations. <i>Optics Express</i> , 2017 , 25, 21826-21840	3.3	11
143	Detection of benzene and other gases with an open-path, static Fourier-transform UV spectrometer. <i>Applied Optics</i> , 1998 , 37, 3172-5	1.7	11
142	Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a wollaston prism. <i>Applied Optics</i> , 1998 , 37, 5777-81	1.7	11
141	Real-time computational photon-counting LiDAR. <i>Optical Engineering</i> , 2017 , 57, 1	1.1	11

140	Orbital Angular Momentum 2015 , 321-340		10
139	Mechanical Faraday effect for orbital angular momentum-carrying beams. <i>Optics Express</i> , 2014 , 22, 1169	99:3	10
138	Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 045003	1.7	10
137	Manipulation of live mouse embryonic stem cells using holographic optical tweezers. <i>Journal of Modern Optics</i> , 2009 , 56, 448-452	1.1	10
136	Momentum paradox in a vortex core. <i>Journal of Modern Optics</i> , 2005 , 52, 1135-1144	1.1	10
135	Fractals in pixellated video feedback. <i>Nature</i> , 2001 , 414, 864	50.4	10
134	Endoscopic fluorescence imaging and point spectroscopy system for the detection of gastro-intestinal cancers. <i>Journal of Modern Optics</i> , 2002 , 49, 731-741	1.1	10
133	Surface profilometry based on polarization analysis. <i>Optics Letters</i> , 1998 , 23, 1800-2	3	10
132	Dual-band single-pixel telescope. <i>Optics Express</i> , 2020 , 28, 18180-18188	3.3	10
131	Measuring nanoparticle flow with the image structure function. <i>Lab on A Chip</i> , 2013 , 13, 2359-63	7.2	9
130	Underdamped modes in a hydrodynamically coupled microparticle system. <i>New Journal of Physics</i> , 2009 , 11, 053007	2.9	9
129	Optical shield: measuring viscosity of turbid fluids using optical tweezers. <i>Optics Express</i> , 2012 , 20, 1212	.7 3.3 2	9
128	Breath ethane peaks during a single haemodialysis session and is associated with time on dialysis. Journal of Breath Research, 2008 , 2, 026004	3.1	9
127	Fluorescence induced by aminolevulinic acid and methyl aminolevulinate on normal skin. <i>Photodiagnosis and Photodynamic Therapy</i> , 2007 , 4, 224-9	3.5	9
126	Effects of changes to the stable environment on the exhalation of ethane, carbon monoxide and hydrogen peroxide by horses with respiratory inflammation. <i>Veterinary Record</i> , 2005 , 157, 408-12	0.9	9
125	Microchip laser-pumped continuous-wave doubly resonant optical parametric oscillator. <i>Optics Letters</i> , 1998 , 23, 517-8	3	9
124	Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer. <i>Journal of Optics</i> , 1999 , 1, 680-684		9
123	Experimental Limits of Ghost Diffraction: Popper's Thought Experiment. Scientific Reports, 2018, 8, 1318	8 4 .9	9

122	Experimental study of quantum thermodynamics using optical vortices. <i>Journal of Physics Communications</i> , 2018 , 2, 035012	1.2	9
121	Hybrid 3D ranging and velocity tracking system combining multi-view cameras and simple LiDAR. <i>Scientific Reports</i> , 2019 , 9, 5241	4.9	8
120	Phase and amplitude imaging with quantum correlations through Fourier Ptychography. <i>Scientific Reports</i> , 2019 , 9, 10445	4.9	8
119	Multi-wavelength compressive computational ghost imaging 2013,		8
118	A multi-object spectral imaging instrument. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 085302	1.7	8
117	Wide field of view, ultracompact static Fourier-transform spectrometer. <i>Review of Scientific Instruments</i> , 1997 , 68, 30-33	1.7	8
116	On the focussing of light, as limited by the uncertainty principle. <i>Journal of Modern Optics</i> , 2008 , 55, 30	83:308	39 8
115	Performance of a rotating aperture for spinning and orienting objects in optical tweezers. <i>Journal of Modern Optics</i> , 2003 , 50, 1533-1538	1.1	8
114	Why are the eigenmodes of stable laser resonators structurally stable?. Optics Letters, 2002, 27, 1869-7	13	8
113	An endoscopic system for the early detection of cancers of the gastrointestinal tract. <i>Review of Scientific Instruments</i> , 1998 , 69, 2521-2523	1.7	8
112	A simple frequency discriminator circuit for offset locking of lasers. <i>Journal of Physics E: Scientific Instruments</i> , 1988 , 21, 554-557		8
111	The Orbital Angular Momentum of Light: An Introduction1-12		8
110	Time-of-flight 3D imaging through multimode optical fibers. <i>Science</i> , 2021 , 374, 1395-1399	33.3	8
109	Real time characterization of hydrodynamics in optically trapped networks of micro-particles. Journal of Biophotonics, 2010 , 3, 244-51	3.1	7
108	Optically driven pumps and flow sensors for microfluidic systems. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2008 , 222, 829-837	1.3	7
107	Mode selection in doubly-resonant optical parametric oscillators. <i>IEEE Journal of Quantum Electronics</i> , 1994 , 30, 2979-2985	2	7
106	A light-in-flight single-pixel camera for use in the visible and short-wave infrared. <i>Optics Express</i> , 2019 , 27, 9829-9837	3.3	7
105	Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera 2016 ,		6

104	Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation. <i>Optics Express</i> , 2014 , 22, 18662-7	3.3	6
103	Demonstration of 8-mode 32-Gbit/s millimeter-wave free-space communication link using 4 orbital-angular-momentum modes on 2 polarizations 2014 ,		6
102	Orbital-Angular-Momentum Mode (De)Multiplexer: A Single Optical Element for MIMO-based and non-MIMO-based Multimode Fiber Systems 2014 ,		6
101	Differential Computational Ghost Imaging 2013 ,		6
100	Single-photon position to time multiplexing using a fiber array. <i>Optics Express</i> , 2011 , 19, 2670-5	3.3	6
99	A polyphonic acoustic vortex and its complementary chords. <i>New Journal of Physics</i> , 2010 , 12, 023018	2.9	6
98	Approach to classify, separate, and enrich objects in groups using ensemble sorting. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5681-5685	11.5	6
97	Study of Turbulence Induced Orbital Angular Momentum Channel Crosstalk in a 1.6km Free-Space Optical Link 2015 ,		5
96	How many photons does it take to form an image?. Applied Physics Letters, 2020, 116, 260504	3.4	5
95	Revealing and concealing entanglement with noninertial motion. <i>Physical Review A</i> , 2020 , 101,	2.6	5
94	Light, the universe and everything 🛭 2 Herculean tasks for quantum cowboys and black diamond skiers. <i>Journal of Modern Optics</i> , 2018 , 65, 1261-1308	1.1	5
93	Testing for entanglement with periodic coarse graining. <i>Physical Review A</i> , 2018 , 97,	2.6	5
92	Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control. <i>Angewandte Chemie</i> , 2012 , 124, 12926-12930	3.6	5
91	Observation of Gouy-phase-induced transversal intensity changes in focused beams. <i>Journal of Modern Optics</i> , 2005 , 52, 2713-2721	1.1	5
90	Modelling and interpretation of gas detection using remote laser pointers. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2006 , 63, 929-39	4.4	5
89	The Cambridge CO2 Laser Saturation Spectrometer. <i>Journal of Modern Optics</i> , 1990 , 37, 737-747	1.1	5
88	Measurement of the spin-orbit coupling interaction in ring-core optical fibers. <i>OSA Continuum</i> , 2019 , 2, 2975	1.4	5
87	Optical tweezers and optical spanners with Laguerreffaussian modes		5

(2008-2020)

86	Single-pixel imaging using caustic patterns. Scientific Reports, 2020, 10, 2281	4.9	4
85	Multimode Communications Using Orbital Angular Momentum 2013 , 569-615		4
84	The efficient sorting of light's orbital angular momentum for optical communications 2012,		4
83	Light in a twist: optical angular momentum 2013 ,		4
82	The measurement and generation of orbital angular momentum using an optical geometric transformation 2013 ,		4
81	Dynamic behaviour of a doubly resonant optical parametric oscillator. <i>Optics Communications</i> , 1997 , 136, 423-428	2	4
80	Detection of mucosal abnormalities in patients with oral cancer using a photodynamic technique: A pilot study. <i>British Journal of Oral and Maxillofacial Surgery</i> , 2008 , 46, 6-10	1.4	4
79	A spectroscopic tool based on an interference filter and birefringent prisms: demonstration of detection of 5-aminolaevulinic acid-induced protoporphyrin IX fluorescence. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 1703-1706	3	4
78	Generation of self-reproducing fractal patterns using a multiple imaging system with feedback. <i>Journal of Modern Optics</i> , 2000 , 47, 1469-1474	1.1	4
77	Doubly resonant optical parametric oscillator formed by index matching cavity mirrors directly onto an uncoated LiB(3)O(5) crystal. <i>Optics Letters</i> , 1995 , 20, 722-4	3	4
76	The angular momentum of light inside a dielectric		4
75	Optical tweezers with increased axial trapping efficiency		4
74	Holographic tracking and sizing of optically trapped microprobes in diamond anvil cells. <i>Optics Express</i> , 2016 , 24, 27009-27015	3.3	4
73	More than meets the eye. <i>Gut</i> , 2018 , 67, 69	19.2	3
72	Interference of probability amplitudes: a simple demonstration within the HongDuMandel experiment. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 032002	1.7	3
71	A comprehensive software suite for optical trapping and manipulation 2009,		3
70	Holographic tweezers: a platform for plasmonics 2011,		3
69	Introduction to Phase-Structured Electromagnetic Waves 2008, 1-17		3

68	Rotation of Particles in Optical Tweezers 2008 , 237-248		3
67	A spatial light phase modulator with an effective resolution of 4 mega-pixels. <i>Journal of Modern Optics</i> , 2008 , 55, 2945-2951	1.1	3
66	The fractal shape of speckled darkness 2008,		3
65	Fractals in pixellated video feedback. <i>Contemporary Physics</i> , 2003 , 44, 137-143	3.3	3
64	Investigation of the magnetic properties of sandwiched epitaxial Fe and Co films using the magneto-optic Kerr effect. <i>Journal of Physics Condensed Matter</i> , 1989 , 1, 4407-4413	1.8	3
63	An ultra-high-resolution offset-locked carbon dioxide laser spectrometer. <i>Journal Physics D: Applied Physics</i> , 1988 , 21, 1352-1358	3	3
62	Dove prisms and polarized light		3
61	A compact acoustic spanner to rotate macroscopic objects. <i>Scientific Reports</i> , 2019 , 9, 6757	4.9	2
60	Fabricating microscopic tools: towards optically actuated micro-robotics 2015,		2
59	'Lissajous-like' trajectories in optical tweezers. <i>Optics Express</i> , 2015 , 23, 31716-27	3.3	2
58	Reply to Comment on E vidence of slow-light effects from rotary drag of structured beams[] <i>New Journal of Physics</i> , 2014 , 16, 038002	2.9	2
57	Measurement of light's orbital angular momentum330-351		2
56	3D computational ghost imaging 2013 ,		2
55	Optical trapping studies of colloidal interactions in liquid films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 343, 133-136	5.1	2
54	Fabrication of terahertz holograms. Journal of Vacuum Science & Technology B, 2007, 25, 2329		2
53	Unambiguous interferometric surface profilometry using ferroelectric liquid crystal modulators. Journal of Electronic Imaging, 2001 , 10, 263	0.7	2
52	A vector approach to the geometrical dependence of polarisation rotation in a non-planar cw Nd:YAG ring laser. <i>Optics Communications</i> , 1994 , 109, 451-456	2	2
51	Beating classical imaging limits with entangled photons 2019 ,		2

(2009-2014)

50	Experimental Analysis of Multiplexing/demultiplexing Laguerre Gaussian Beams with Different Radial Index 2014 ,		2
49	Developing a portable gas imaging camera using highly tunable active-illumination and computer vision. <i>Optics Express</i> , 2020 , 28, 18566-18576	3.3	2
48	Single-pixel LIDAR with Deep Learning Optimised Sampling 2020 ,		2
47	Noise rejection through an improved quantum illumination protocol. <i>Scientific Reports</i> , 2021 , 11, 21841	4.9	2
46	High-Speed Camera Particle Tracking and Force Measurement, with Real-Time Haptic Feedback 2009 ,		2
45	Leach et´al. Reply. <i>Physical Review Letters</i> , 2019 , 122, 139402	7.4	1
44	Slow light in ruby: delaying energy beyond the input pulse 2015,		1
43	Optically controlled hydrodynamic micro-manipulation 2015,		1
42	Practical bound for dimensionality in high-dimensional entanglement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 6122-3	11.5	1
41	Nanoarrays for the generation of complex optical wave-forms 2014,		1
40	3D computational ghost imaging 2014 ,		1
39	Observation of the rotational Doppler effect from an optically trapped micro-particle 2014,		1
38	Fashioning microscopic tools 2013 ,		1
37	Investigating the interaction forces between T cells and antigen-presenting cells using an optical trapping system 2011 ,		1
36	Surface imaging using optically controlled microrods 2011,		1
35	Measuring the orbital angular momentum of light 2011 ,		1
34	Photon orbital angular momentum: generation, measurement and application to QKD 2012,		1
33	Angular diffraction 2009 ,		1

32	Optical pumps and sensors for microfluidic devices 2006 , 6131, 71		1
31	A Multimode Fibre-coupled Compact Optical Wavelength Meter based on Wollaston Prisms. <i>Strain</i> , 2003 , 39, 107-110	1.7	1
30	Three-dimensional structures in optical tweezers 2004,		1
29	Fractal generation using optical feedback with incoherent gain. <i>Optics Communications</i> , 2001 , 190, 123-	2 7	1
28	Carbon Dioxide Laser Saturation Spectroscopy at kHz Linewidths. <i>Journal of Modern Optics</i> , 1988 , 35, 315-318	1.1	1
27	Fast Compressive 3D Single-pixel Imaging 2016 ,		1
26	First-Photon 3D Imaging with a Single-Pixel Camera 2016 ,		1
25	Long Distance Free-Space Propagation of light carrying Orbital Angular Momentum 2016 ,		1
24	Exploiting digital micromirror device for holographic micro-endoscopy 2019,		1
23	Optimising backscatter from multiple beam interference. <i>Optics Express</i> , 2021 , 29, 8770-8776	3.3	1
22	Quantum Mechanical Properties of Light Fields Carrying Orbital Angular Momentum 2016 , 435-454		1
21	The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge. <i>Journal of Modern Optics</i> , 2016 , 63, S51-S56	1.1	1
20	Compressed sensing in the far-field of the spatial light modulator in high noise conditions. <i>Scientific Reports</i> , 2021 , 11, 17460	4.9	1
19	Single-pixel imaging with heralded single photons 2022 , 1, 826		1
18	Quantum imaging with a photon counting camera Scientific Reports, 2022, 12, 8286	4.9	1
17	Entropic uncertainty minimum for angle and angular momentum. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 105404	1.7	
16	Titelbild: Directed Assembly of Inorganic Polyoxometalate-based Micrometer-Scale Tubular Architectures by Using Optical Control (Angew. Chem. 51/2012). <i>Angewandte Chemie</i> , 2012 , 124, 12799-	₹2799)
15	An experimentalist's introduction to orbital angular momentum for quantum optics314-329		

LIST OF PUBLICATIONS

14	Optical vortices and topology 2007 , CMI33
13	Visual Observations of SERRS from Single Silver-Coated Silica Microparticles within Optical Tweezers. <i>Angewandte Chemie</i> , 2004 , 116, 2566-2568
12	The photodynamic detection of mucosal abnormality in oral cancer patients: a pilot study 2005 , 5691, 159
11	A Fine Point on Light Angular Momentum. <i>Physics Today</i> , 2005 , 58, 17-17
10	Wollaston prism-based digital laser wavelength meter 2002 , 4653, 141
9	Mueller matrix error correction for a fringe-free interferometry system. <i>Applied Optics</i> , 2001 , 40, 3205-10.7
8	Open-path UV Fourier-transform gas monitor with no moving parts. <i>Journal of Optics</i> , 1998 , 7, 875-887
7	A technique for modelling the performance of birefringent wave plates. <i>Optical and Quantum Electronics</i> , 1999 , 31, 645-653
6	A laser for the pocket of Joseph's 'multicoloured' coat. <i>Physics Education</i> , 1994 , 29, 122-126 o.8
5	Frequency measurements in the 9th spectrum of CF3Br. <i>Infrared Physics</i> , 1990 , 30, 279-284
4	Laser Frequency Measurement at NPL 1989 , 459-460
3	Helically Phased Beams, and Analogies with Polarization25-35
2	Orbital Angular Momentum 2012 , 3-12
1	Orbital Angular Momentum: Testbed for Quantum Mechanics 2014 , 159-171