
John D Kisiday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7862412/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ο ΚΙΩΙΟΛΥ

#	Article	IF	CITATIONS
1	Biomechanical, Morphological, and Biochemical Characteristics of Articular Cartilage of the Ovine Humeral Head. Cartilage, 2022, 13, 194760352210814.	1.4	1
2	Adult ovine connective tissue cells resemble mesenchymal stromal cells in their propensity for extensive ex vivo expansion. Connective Tissue Research, 2021, 62, 671-680.	1.1	2
3	Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Engineering - Part A, 2021, 27, 748-760.	1.6	39
4	Mechanical, biochemical, and morphological topography of ovine knee cartilage. Journal of Orthopaedic Research, 2021, 39, 780-787.	1.2	10
5	Colony Forming Potential and Protein Composition of Commercial Umbilical Cord Allograft Products in Comparison With Autologous Orthobiologics. American Journal of Sports Medicine, 2021, 49, 3404-3413.	1.9	2
6	Culture Conditions that Support Expansion and Chondrogenesis of Middle-Aged Rat Mesenchymal Stem Cells. Cartilage, 2020, 11, 364-373.	1.4	4
7	Can Extracorporeal Shockwave Promote Osteogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells In Vitro <i>?</i> . Stem Cells and Development, 2020, 29, 110-118.	1.1	6
8	The plateletâ€rich plasma and mesenchymal stem cell milieu: A review of therapeutic effects on bone healing. Journal of Orthopaedic Research, 2020, 38, 2539-2550.	1.2	24
9	Adult ovine chondrocytes in expansion culture adopt progenitor cell properties that are favorable for cartilage tissue engineering. Journal of Orthopaedic Research, 2020, 38, 1996-2005.	1.2	3
10	Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in selfâ€assembling peptide hydrogel. Journal of Orthopaedic Research, 2019, 37, 1368-1375.	1.2	9
11	Differential Effects of the Antioxidants N-Acetylcysteine and Pyrrolidine Dithiocarbamate on Mesenchymal Stem Cell Chondrogenesis. Cellular and Molecular Bioengineering, 2019, 12, 153-163.	1.0	3
12	Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. Journal of Orthopaedic Research, 2018, 36, 506-514.	1.2	12
13	Use of Platelet-Rich Plasma Immediately After an Injury Did Not Improve Ligament Healing, and Increasing Platelet Concentrations Was Detrimental in an In Vivo Animal Model. American Journal of Sports Medicine, 2018, 46, 702-712.	1.9	39
14	Equine Models for the Investigation of Mesenchymal Stem Cell Therapies in Orthopaedic Disease. Operative Techniques in Sports Medicine, 2017, 25, 41-49.	0.2	18
15	Growth Factor-Mediated Migration of Bone Marrow Progenitor Cells for Accelerated Scaffold Recruitment. Tissue Engineering - Part A, 2016, 22, 917-927.	1.6	21
16	Effects of Dexamethasone Concentration and Timing of Exposure on Chondrogenesis of Equine Bone Marrow–Derived Mesenchymal Stem Cells. Cartilage, 2016, 7, 92-103.	1.4	17
17	Deletion of ADAMTS5 does not affect aggrecan or versican degradation but promotes glucose uptake and proteoglycan synthesis in murine adipose derived stromal cells. Matrix Biology, 2015, 47, 66-84.	1.5	17
18	Sustained delivery of bioactive TGFâ€Î²1 from selfâ€assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. Journal of Biomedical Materials Research - Part A, 2014, 102, 1275-1285.	2.1	36

John D Kisiday

#	Article	IF	CITATIONS
19	Clinical Outcome After Intraâ€Articular Administration of Bone Marrow Derived Mesenchymal Stem Cells in 33 Horses With Stifle Injury. Veterinary Surgery, 2014, 43, 255-265.	0.5	152
20	Effects of equine bone marrow aspirate volume on isolation, proliferation, and differentiation potential of mesenchymal stem cells. American Journal of Veterinary Research, 2013, 74, 801-807.	0.3	26
21	Development of an in vitro model of injury-induced osteoarthritis in cartilage explants from adult horses through application of single-impact compressive overload. American Journal of Veterinary Research, 2013, 74, 40-47.	0.3	13
22	Effect of scaffold dilution on migration of mesenchymal stem cells from fibrin hydrogels. American Journal of Veterinary Research, 2012, 73, 313-318.	0.3	37
23	Static and cyclic tensile strain induce myxomatous effector proteins and serotonin in canine mitral valves. Journal of Veterinary Cardiology, 2012, 14, 223-230.	0.3	43
24	Effects of Platelet-Rich Plasma Composition on Anabolic and Catabolic Activities in Equine Cartilage and Meniscal Explants. Cartilage, 2012, 3, 245-254.	1.4	42
25	Evaluation of Intra-Articular Mesenchymal Stem Cells to Augment Healing of Microfractured Chondral Defects. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, 1552-1561.	1.3	232
26	Paper # 98: Bone Marrow-Derived Culture-Expanded Mesenchymal Stem Cells in Conjunction with Microfracture to Treat Chondral Lesions in an Equine Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, e132.	1.3	0
27	Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 600-611.	1.3	22
28	Induction of bone marrow mesenchymal stem cell chondrogenesis following shortâ€ŧerm suspension culture. Journal of Orthopaedic Research, 2011, 29, 26-32.	1.2	7
29	Controlled Delivery of Transforming Growth Factor β1 by Self-Assembling Peptide Hydrogels Induces Chondrogenesis of Bone Marrow Stromal Cells and Modulates Smad2/3 Signaling. Tissue Engineering - Part A, 2011, 17, 83-92.	1.6	69
30	Osteoblastic differentiation of human and equine adult bone marrowâ€derived mesenchymal stem cells when BMPâ€2 or BMPâ€7 homodimer genetic modification is compared to BMPâ€2/7 heterodimer genetic modification in the presence and absence of dexamethasone. Journal of Orthopaedic Research, 2010, 28, 1330-1337.	1.2	40
31	Mechanical injury of explants from the articulating surface of the inner meniscus. Archives of Biochemistry and Biophysics, 2010, 494, 138-144.	1.4	19
32	Polysaccharide-Based Polyelectrolyte Multilayer Surface Coatings can Enhance Mesenchymal Stem Cell Response to Adsorbed Growth Factors. Biomacromolecules, 2010, 11, 2629-2639.	2.6	76
33	Evaluation of adiposeâ€derived stromal vascular fraction or bone marrowâ€derived mesenchymal stem cells for treatment of osteoarthritis. Journal of Orthopaedic Research, 2009, 27, 1675-1680.	1.2	232
34	Catabolic Responses of Chondrocyte-Seeded Peptide Hydrogel to Dynamic Compression. Annals of Biomedical Engineering, 2009, 37, 1368-1375.	1.3	32
35	Dynamic Compression Stimulates Proteoglycan Synthesis by Mesenchymal Stem Cells in the Absence of Chondrogenic Cytokines. Tissue Engineering - Part A, 2009, 15, 2817-2824.	1.6	92
36	Evaluation of adult equine bone marrow―and adiposeâ€derived progenitor cell chondrogenesis in hydrogel cultures. Journal of Orthopaedic Research, 2008, 26, 322-331.	1.2	186

JOHN D KISIDAY

#	Article	IF	CITATIONS
37	Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Medical Hypotheses, 2008, 71, 900-908.	0.8	132
38	Tissue-Engineered Versus Native Cartilage: Linkage between Cellular Mechano-Transduction and Biomechanical Properties. Novartis Foundation Symposium, 2008, , 52-69.	1.2	21
39	Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 2008, 11, 343-53.	0.3	237
40	Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: A case study. Pain Physician, 2006, 9, 253-6.	0.3	24
41	Evaluation of Medium Supplemented with Insulin–Transferrin–Selenium for Culture of Primary Bovine Calf Chondrocytes in Three-Dimensional Hydrogel Scaffolds. Tissue Engineering, 2005, 11, 141-151.	4.9	73
42	Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. Journal of Biomechanics, 2004, 37, 595-604.	0.9	213
43	Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Frontiers in Veterinary Science, 0, 9, .	0.9	7