Jeremy Andrew Guggenheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Commonly occurring genetic polymorphisms with a major impact on the risk of nonsyndromic strabismus: replication in a sample from Finland. Journal of AAPOS, 2022, 26, 12.e1-12.e6.	0.2	2
2	Incidence and Progression of Myopia in Early Adulthood. JAMA Ophthalmology, 2022, 140, 162.	1.4	53
3	Whole exome sequence analysis in 51 624 participants identifies novel genes and variants associated with refractive error and myopia. Human Molecular Genetics, 2022, , .	1.4	10
4	Assessing the contribution of genetic nurture to refractive error. European Journal of Human Genetics, 2022, 30, 1226-1232.	1.4	2
5	Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology, 2021, 31, 853-883.	0.7	76
6	Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Scientific Reports, 2021, 11, 6337.	1.6	34
7	IMI 2021 Yearly Digest. , 2021, 62, 7.		36
8	IMI Risk Factors for Myopia. , 2021, 62, 3.		143
9	IMI Prevention of Myopia and Its Progression. , 2021, 62, 6.		136
10	Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmology, 2021, 139, 601.	1.4	22
11	Consortium for Refractive Error and Myopia (CREAM): Vision, Mission, and Accomplishments. Essentials in Ophthalmology, 2021, , 381-407.	0.0	2
12	Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia. , 2021, 62, 24.		5
13	Hyperopia Is Not Causally Associated With a Major Deficit in Educational Attainment. Translational Vision Science and Technology, 2021, 10, 34.	1.1	3
14	Association between birth weight and refractive error in adulthood: a Mendelian randomisation study. British Journal of Ophthalmology, 2020, 104, 214-219.	2.1	19
15	Geographical Variation in Likely Myopia and Environmental Risk Factors: A Multilevel Cross Classified Analysis of A UK Cohort. Ophthalmic Epidemiology, 2020, 27, 1-9.	0.8	5
16	Association Between Polygenic Risk Score and Risk of Myopia. JAMA Ophthalmology, 2020, 138, 7.	1.4	44
17	Effect of Education on Myopia: Evidence from the United Kingdom ROSLA 1972 Reform. , 2020, 61, 7.		25

#	Article	IF	CITATIONS
19	Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology, 2020, 3, 133.	2.0	22
20	Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genetics, 2020, 52, 401-407.	9.4	180
21	Evidence That Emmetropization Buffers Against Both Genetic and Environmental Risk Factors for Myopia. , 2020, 61, 41.		7
22	Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Molecular Genetics and Genomics, 2020, 295, 843-853.	1.0	11
23	Rationale and protocol for the 7- and 8-year longitudinal assessments of eye health in a cohort of young adults in the Raine Study. BMJ Open, 2020, 10, e033440.	0.8	5
24	Associations Between Fetal Growth Trajectories and the Development of Myopia by 20 Years of Age. , 2020, 61, 26.		3
25	Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. Scientific Reports, 2019, 9, 15413.	1.6	23
26	A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia. , 2019, 60, 559.		9
27	Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Communications Biology, 2019, 2, 167.	2.0	27
28	A commonly occurring genetic variant within the NPLOC4–TSPAN10–PDE6G gene cluster is associated with the risk of strabismus. Human Genetics, 2019, 138, 723-737.	1.8	28
29	IMI $\hat{a} \in$ '' Interventions for Controlling Myopia Onset and Progression Report. , 2019, 60, M106.		230
30	IMI – Myopia Genetics Report. , 2019, 60, M89.		156
31	Refractive Error Has Minimal Influence on the Risk of Age-Related Macular Degeneration: A Mendelian Randomization Study. American Journal of Ophthalmology, 2019, 206, 87-93.	1.7	11
32	Mendelian randomisation and the goal of inferring causation from observational studies in the vision sciences. Ophthalmic and Physiological Optics, 2019, 39, 11-25.	1.0	16
33	Evidence For and Against Genetic Testing to Identify Children at Risk of High Myopia. Ophthalmology, 2019, 126, 1615-1616.	2.5	0
34	Myopia: mechanisms, manifestations and management. Ophthalmic and Physiological Optics, 2018, 38, 207-209.	1.0	3
35	Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica, 2018, 96, 301-309.	0.6	159
36	High myopia induced by form deprivation is associated with altered corneal biomechanical properties in chicks. PLoS ONE, 2018, 13, e0207189.	1.1	25

#	Article	IF	CITATIONS
37	Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Human Genetics, 2018, 137, 881-896.	1.8	46
38	A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic and Physiological Optics, 2018, 38, 492-502.	1.0	34
39	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	9.4	239
40	Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. , 2018, 59, 338.		50
41	Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ: British Medical Journal, 2018, 361, k2022.	2.4	184
42	A genome-wide association study of corneal astigmatism: The CREAM Consortium. Molecular Vision, 2018, 24, 127-142.	1.1	10
43	Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. International Journal of Epidemiology, 2017, 46, 1882-1890.	0.9	47
44	Genetic prediction of myopia: prospects and challenges. Ophthalmic and Physiological Optics, 2017, 37, 549-556.	1.0	13
45	The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Structure and Function, 2017, 222, 1315-1330.	1.2	6
46	Time Outdoors at Specific Ages During Early Childhood and the Risk of Incident Myopia. , 2017, 58, 1158.		59
47	When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genetic Epidemiology, 2016, 40, 756-766.	0.6	34
48	Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 2016, 7, 11008.	5.8	104
49	Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 2016, 6, 25853.	1.6	80
50	Childhood febrile illness and the risk of myopia in UK Biobank participants. Eye, 2016, 30, 608-614.	1.1	23
51	Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 2015, 134, 131-146.	1.8	24
52	Role of Educational Exposure in the Association Between Myopia and Birth Order. JAMA Ophthalmology, 2015, 133, 1408.	1.4	26
53	APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genetics, 2015, 11, e1005432.	1.5	77
54	Assumption-free estimation of the genetic contribution to refractive error across childhood. Molecular Vision, 2015, 21, 621-32.	1.1	36

#	Article	IF	CITATIONS
55	Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology and Visual Science, 2014, 55, 8550-8558.	3.3	73
56	Body Stature Growth Trajectories during Childhood and the Development of Myopia. Ophthalmology, 2013, 120, 1064-1073.e1.	2.5	42
57	An introduction to Point-Counterpoint articles. Ophthalmic and Physiological Optics, 2013, 33, 354-354.	1.0	0
58	Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 2013, 93, 264-277.	2.6	139
59	The chick as an animal model of eye disease. Drug Discovery Today: Disease Models, 2013, 10, e225-e230.	1.2	11
60	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	9.4	398
61	Birth Order and Myopia. Ophthalmic Epidemiology, 2013, 20, 375-384.	0.8	29
62	Coordinated Genetic Scaling of the Human Eye: Shared Determination of Axial Eye Length and Corneal Curvature. , 2013, 54, 1715.		27
63	On the shoulders of a giant: his legacy will live on. Ophthalmic and Physiological Optics, 2013, 33, 193-195.	1.0	2
64	Disruption of the Centrifugal Visual System Inhibits Early Eye Growth in Chicks. , 2013, 54, 3632.		12
65	Association Mapping of the High-Grade Myopia <i>MYP3</i> Locus Reveals Novel Candidates <i>UHRF1BP1L</i> , <i>PTPRR</i> , and <i>PPFIA2</i> , 2013, 54, 2076.		26
66	A genome-wide association study for corneal curvature identifies the platelet-derived growth factor receptor α gene as a quantitative trait locus for eye size in white Europeans. Molecular Vision, 2013, 19, 243-53.	1.1	34
67	Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study. , 2012, 53, 2856.		314
68	Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 0770071.	1.4	8
69	Graphics processing unit-based dispersion encoded full-range frequency domain OCT. Proceedings of SPIE, 2012, , .	0.8	0
70	Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics, 2012, 131, 1467-1480.	1.8	67
71	Ocular epidemiology and genetics. Ophthalmic and Physiological Optics, 2012, 32, 1-2.	1.0	3
72	An international collaborative family-based whole genome quantitative trait linkage scan for myopic refractive error. Molecular Vision, 2012, 18, 720-9.	1.1	14

#	Article	IF	CITATIONS
73	Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography. Experimental Eye Research, 2011, 93, 482-490.	1.2	15
74	Preâ€treatment choroidal thickness is not predictive of susceptibility to formâ€deprivation myopia in chickens. Ophthalmic and Physiological Optics, 2011, 31, 516-528.	1.0	15
75	Selective Breeding for Susceptibility to Myopia Reveals a Gene–Environment Interaction. , 2011, 52, 4003.		66
76	Heritability of Ocular Component Dimensions in Chickens: Genetic Variants Controlling Susceptibility to Experimentally Induced Myopia and Pretreatment Eye Size Are Distinct. , 2011, 52, 4012.		23
77	Lumican and muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia. Eye, 2010, 24, 1411-1412.	1.1	9
78	Sex, Eye Size, and the Rate of Myopic Eye Growth Due to Form Deprivation in Outbred White Leghorn Chickens. , 2010, 51, 651.		14
79	Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye. Journal of Biomedical Optics, 2010, 15, 046004.	1.4	11
80	Genetic Association of Insulin-like Growth Factor-1 Polymorphisms with High-Grade Myopia in an International Family Cohort. , 2010, 51, 4476.		57
81	Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken. Molecular Vision, 2010, 16, 144-53.	1.1	2
82	An International Collaborative Family-Based Whole-Genome Linkage Scan for High-Grade Myopia. , 2009, 50, 3116.		65
83	<i>COL1A1</i> and <i>COL2A1</i> Genes and Myopia Susceptibility: Evidence of Association and Suggestive Linkage to the <i>COL2A1</i> Locus. , 2009, 50, 4080.		59
84	Quality of DNA Extracted from Mouthwashes. PLoS ONE, 2009, 4, e6165.	1.1	18
85	Common determinants of body size and eye size in chickens from an advanced intercross line. Experimental Eye Research, 2009, 89, 42-48.	1.2	33
86	Season of Birth, Daylight Hours at Birth, and High Myopia. Ophthalmology, 2009, 116, 468-473.	2.5	38
87	Myocilin polymorphisms and high myopia in subjects of European origin. Molecular Vision, 2009, 15, 213-22.	1.1	17
88	Comment on â€~A PAX6 gene polymorphism is associated with genetic predisposition to extreme myopia'. Eye, 2008, 22, 598-599.	1.1	11
89	Axes of astigmatism in fellow eyes show mirror rather than direct symmetry. Ophthalmic and Physiological Optics, 2008, 28, 327-333.	1.0	23
90	Is active glucose transport present in bovine ciliary body epithelium?. American Journal of Physiology - Cell Physiology, 2007, 292, C1087-C1093.	2.1	7

#	Article	IF	CITATIONS
91	Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk factors for Myopia. British Journal of Ophthalmology, 2007, 91, 781-784.	2.1	37
92	Application of Fluorescence Difference Gel Electrophoresis Technology in Searching for Protein Biomarkers in Chick Myopia. Journal of Proteome Research, 2007, 6, 4135-4149.	1.8	29
93	Simultaneous Defocus Integration during Refractive Development. , 2007, 48, 5352.		67
94	A Chick Retinal Proteome Database and Differential Retinal Protein Expressions during Early Ocular Development. Journal of Proteome Research, 2006, 5, 771-784.	1.8	35
95	Proteases in eye development and disease. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 90-105.	3.6	53
96	Anisometropia Is Independently Associated with Both Spherical and Cylindrical Ametropia. , 2005, 46, 4024.		39
97	Family Aggregation of High Myopia: Estimation of the Sibling Recurrence Risk Ratio. , 2004, 45, 2873.		93
98	Linkage Analysis of the Genetic Loci for High Myopia on 18p, 12q, and 17q in 51 U.K. Families. , 2004, 45, 2879.		72
99	Postnatal refractive development in the Brown Norway rat: Limitations of standard refractive and ocular component dimension measurement techniques. Current Eye Research, 2004, 29, 369-376.	0.7	16
100	Astigmatic Axis is Related to the Level of Spherical Ametropia. Optometry and Vision Science, 2004, 81, 18-26.	0.6	42
101	The Association between Spherical and Cylindrical Component Powers. Optometry and Vision Science, 2004, 81, 62-63.	0.6	23
102	Similar genetic susceptibility to form-deprivation myopia in three strains of chicken. Vision Research, 2002, 42, 2747-2756.	0.7	19
103	Mammalian polyadenylation sites: implications for differential display. Nucleic Acids Research, 1999, 27, 1386-1391.	6.5	13
104	Chloride binding in the stroma of cultured human corneas. Experimental Eye Research, 1995, 61, 109-113.	1.2	5