Jeremy Andrew Guggenheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78624/publications.pdf

Version: 2024-02-01

104 papers 5,117 citations

172386 29 h-index 54 g-index

108 all docs

108 docs citations

108 times ranked 3474 citing authors

#	Article	IF	CITATIONS
1	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	9.4	398
2	Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study., 2012, 53, 2856.		314
3	Myopia. Nature Reviews Disease Primers, 2020, 6, 99.	18.1	259
4	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	9.4	239
5	IMI – Interventions for Controlling Myopia Onset and Progression Report. , 2019, 60, M106.		230
6	Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ: British Medical Journal, 2018, 361, k2022.	2.4	184
7	Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genetics, 2020, 52, 401-407.	9.4	180
8	Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica, 2018, 96, 301-309.	0.6	159
9	IMI – Myopia Genetics Report. , 2019, 60, M89.		156
10	IMI Risk Factors for Myopia., 2021, 62, 3.		143
11	Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 2013, 93, 264-277.	2.6	139
12	IMI Prevention of Myopia and Its Progression. , 2021, 62, 6.		136
13	Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 2016, 7, 11008.	5.8	104
14	Family Aggregation of High Myopia: Estimation of the Sibling Recurrence Risk Ratio., 2004, 45, 2873.		93
15	Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 2016, 6, 25853.	1.6	80
16	APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLoS Genetics, 2015, 11, e1005432.	1.5	77
17	Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology, 2021, 31, 853-883.	0.7	76
18	Does Vitamin D Mediate the Protective Effects of Time Outdoors On Myopia? Findings From a Prospective Birth Cohort. Investigative Ophthalmology and Visual Science, 2014, 55, 8550-8558.	3.3	73

#	Article	IF	CITATIONS
19	Linkage Analysis of the Genetic Loci for High Myopia on 18p, 12q, and 17q in 51 U.K. Families. , 2004, 45, 2879.		72
20	Simultaneous Defocus Integration during Refractive Development. , 2007, 48, 5352.		67
21	Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics, 2012, 131, 1467-1480.	1.8	67
22	Selective Breeding for Susceptibility to Myopia Reveals a Gene–Environment Interaction. , 2011, 52, 4003.		66
23	An International Collaborative Family-Based Whole-Genome Linkage Scan for High-Grade Myopia. , 2009, 50, 3116.		65
24	<i>COL1A1</i> and <i>COL2A1</i> Genes and Myopia Susceptibility: Evidence of Association and Suggestive Linkage to the <i>COL2A1</i> Locus., 2009, 50, 4080.		59
25	Time Outdoors at Specific Ages During Early Childhood and the Risk of Incident Myopia., 2017, 58, 1158.		59
26	Genetic Association of Insulin-like Growth Factor-1 Polymorphisms with High-Grade Myopia in an International Family Cohort., 2010, 51, 4476.		57
27	Proteases in eye development and disease. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 90-105.	3.6	53
28	Incidence and Progression of Myopia in Early Adulthood. JAMA Ophthalmology, 2022, 140, 162.	1.4	53
29	Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. , 2018, 59, 338.		50
30	Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. International Journal of Epidemiology, 2017, 46, 1882-1890.	0.9	47
31	Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Human Genetics, 2018, 137, 881-896.	1.8	46
32	Association Between Polygenic Risk Score and Risk of Myopia. JAMA Ophthalmology, 2020, 138, 7.	1.4	44
33	Astigmatic Axis is Related to the Level of Spherical Ametropia. Optometry and Vision Science, 2004, 81, 18-26.	0.6	42
34	Body Stature Growth Trajectories during Childhood and the Development of Myopia. Ophthalmology, 2013, 120, 1064-1073.e1.	2.5	42
35	Anisometropia Is Independently Associated with Both Spherical and Cylindrical Ametropia., 2005, 46, 4024.		39
36	Season of Birth, Daylight Hours at Birth, and High Myopia. Ophthalmology, 2009, 116, 468-473.	2.5	38

#	Article	IF	Citations
37	Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk factors for Myopia. British Journal of Ophthalmology, 2007, 91, 781-784.	2.1	37
38	IMI 2021 Yearly Digest. , 2021, 62, 7.		36
39	Assumption-free estimation of the genetic contribution to refractive error across childhood. Molecular Vision, 2015, 21, 621-32.	1.1	36
40	A Chick Retinal Proteome Database and Differential Retinal Protein Expressions during Early Ocular Development. Journal of Proteome Research, 2006, 5, 771-784.	1.8	35
41	When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genetic Epidemiology, 2016, 40, 756-766.	0.6	34
42	A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic and Physiological Optics, 2018, 38, 492-502.	1.0	34
43	Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Scientific Reports, 2021, 11, 6337.	1.6	34
44	A genome-wide association study for corneal curvature identifies the platelet-derived growth factor receptor \hat{l}_{\pm} gene as a quantitative trait locus for eye size in white Europeans. Molecular Vision, 2013, 19, 243-53.	1.1	34
45	Common determinants of body size and eye size in chickens from an advanced intercross line. Experimental Eye Research, 2009, 89, 42-48.	1.2	33
46	Application of Fluorescence Difference Gel Electrophoresis Technology in Searching for Protein Biomarkers in Chick Myopia. Journal of Proteome Research, 2007, 6, 4135-4149.	1.8	29
47	Birth Order and Myopia. Ophthalmic Epidemiology, 2013, 20, 375-384.	0.8	29
48	A commonly occurring genetic variant within the NPLOC4–TSPAN10–PDE6G gene cluster is associated with the risk of strabismus. Human Genetics, 2019, 138, 723-737.	1.8	28
49	Coordinated Genetic Scaling of the Human Eye: Shared Determination of Axial Eye Length and Corneal Curvature. , 2013, 54, 1715.		27
50	Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Communications Biology, 2019, 2, 167.	2.0	27
51	Association Mapping of the High-Grade Myopia <i>MYP3</i> Locus Reveals Novel Candidates <i>UHRF1BP1L</i> , <i>PTPRR</i> , and <i>PPFIA2</i> , 2013, 54, 2076.		26
52	Role of Educational Exposure in the Association Between Myopia and Birth Order. JAMA Ophthalmology, 2015, 133, 1408.	1.4	26
53	High myopia induced by form deprivation is associated with altered corneal biomechanical properties in chicks. PLoS ONE, 2018, 13, e0207189.	1.1	25
54	Effect of Education on Myopia: Evidence from the United Kingdom ROSLA 1972 Reform. , 2020, 61, 7.		25

#	Article	IF	Citations
55	Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 2015, 134, 131-146.	1.8	24
56	The Association between Spherical and Cylindrical Component Powers. Optometry and Vision Science, 2004, 81, 62-63.	0.6	23
57	Axes of astigmatism in fellow eyes show mirror rather than direct symmetry. Ophthalmic and Physiological Optics, 2008, 28, 327-333.	1.0	23
58	Heritability of Ocular Component Dimensions in Chickens: Genetic Variants Controlling Susceptibility to Experimentally Induced Myopia and Pretreatment Eye Size Are Distinct., 2011, 52, 4012.		23
59	Childhood febrile illness and the risk of myopia in UK Biobank participants. Eye, 2016, 30, 608-614.	1.1	23
60	Grandmothers' smoking in pregnancy is associated with a reduced prevalence of early-onset myopia. Scientific Reports, 2019, 9, 15413.	1.6	23
61	Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology, 2020, 3, 133.	2.0	22
62	Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmology, 2021, 139, 601.	1.4	22
63	Similar genetic susceptibility to form-deprivation myopia in three strains of chicken. Vision Research, 2002, 42, 2747-2756.	0.7	19
64	Association between birth weight and refractive error in adulthood: a Mendelian randomisation study. British Journal of Ophthalmology, 2020, 104, 214-219.	2.1	19
65	Quality of DNA Extracted from Mouthwashes. PLoS ONE, 2009, 4, e6165.	1.1	18
66	Myocilin polymorphisms and high myopia in subjects of European origin. Molecular Vision, 2009, 15, 213-22.	1.1	17
67	Postnatal refractive development in the Brown Norway rat: Limitations of standard refractive and ocular component dimension measurement techniques. Current Eye Research, 2004, 29, 369-376.	0.7	16
68	Mendelian randomisation and the goal of inferring causation from observational studies in the vision sciences. Ophthalmic and Physiological Optics, 2019, 39, 11-25.	1.0	16
69	Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography. Experimental Eye Research, 2011, 93, 482-490.	1.2	15
70	Preâ€treatment choroidal thickness is not predictive of susceptibility to formâ€deprivation myopia in chickens. Ophthalmic and Physiological Optics, 2011, 31, 516-528.	1.0	15
71	Sex, Eye Size, and the Rate of Myopic Eye Growth Due to Form Deprivation in Outbred White Leghorn Chickens. , 2010, 51, 651.		14
72	An international collaborative family-based whole genome quantitative trait linkage scan for myopic refractive error. Molecular Vision, 2012, 18, 720-9.	1.1	14

#	Article	IF	CITATIONS
73	Mammalian polyadenylation sites: implications for differential display. Nucleic Acids Research, 1999, 27, 1386-1391.	6.5	13
74	Genetic prediction of myopia: prospects and challenges. Ophthalmic and Physiological Optics, 2017, 37, 549-556.	1.0	13
75	Disruption of the Centrifugal Visual System Inhibits Early Eye Growth in Chicks., 2013, 54, 3632.		12
76	Comment on  A PAX6 gene polymorphism is associated with genetic predisposition to extreme myopia'. Eye, 2008, 22, 598-599.	1.1	11
77	Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye. Journal of Biomedical Optics, 2010, 15, 046004.	1.4	11
78	The chick as an animal model of eye disease. Drug Discovery Today: Disease Models, 2013, 10, e225-e230.	1.2	11
79	Refractive Error Has Minimal Influence on the Risk of Age-Related Macular Degeneration: A Mendelian Randomization Study. American Journal of Ophthalmology, 2019, 206, 87-93.	1.7	11
80	Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Molecular Genetics and Genomics, 2020, 295, 843-853.	1.0	11
81	A genome-wide association study of corneal astigmatism: The CREAM Consortium. Molecular Vision, 2018, 24, 127-142.	1.1	10
82	Whole exome sequence analysis in 51 624 participants identifies novel genes and variants associated with refractive error and myopia. Human Molecular Genetics, 2022, , .	1.4	10
83	Lumican and muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia. Eye, 2010, 24, 1411-1412.	1.1	9
84	A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia., 2019, 60, 559.		9
85	Graphics processing unit-based dispersion encoded full-range frequency-domain optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 0770071.	1.4	8
86	Is active glucose transport present in bovine ciliary body epithelium?. American Journal of Physiology - Cell Physiology, 2007, 292, C1087-C1093.	2.1	7
87	Evidence That Emmetropization Buffers Against Both Genetic and Environmental Risk Factors for Myopia., 2020, 61, 41.		7
88	The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Structure and Function, 2017, 222, 1315-1330.	1.2	6
89	Chloride binding in the stroma of cultured human corneas. Experimental Eye Research, 1995, 61, 109-113.	1.2	5
90	Geographical Variation in Likely Myopia and Environmental Risk Factors: A Multilevel Cross Classified Analysis of A UK Cohort. Ophthalmic Epidemiology, 2020, 27, 1-9.	0.8	5

#	Article	IF	CITATIONS
91	Rationale and protocol for the 7- and 8-year longitudinal assessments of eye health in a cohort of young adults in the Raine Study. BMJ Open, 2020, 10, e033440.	0.8	5
92	Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia., 2021, 62, 24.		5
93	Ocular epidemiology and genetics. Ophthalmic and Physiological Optics, 2012, 32, 1-2.	1.0	3
94	Myopia: mechanisms, manifestations and management. Ophthalmic and Physiological Optics, 2018, 38, 207-209.	1.0	3
95	Hyperopia Is Not Causally Associated With a Major Deficit in Educational Attainment. Translational Vision Science and Technology, 2021, 10, 34.	1.1	3
96	Associations Between Fetal Growth Trajectories and the Development of Myopia by 20 Years of Age. , 2020, 61, 26.		3
97	On the shoulders of a giant: his legacy will live on. Ophthalmic and Physiological Optics, 2013, 33, 193-195.	1.0	2
98	Consortium for Refractive Error and Myopia (CREAM): Vision, Mission, and Accomplishments. Essentials in Ophthalmology, 2021, , 381-407.	0.0	2
99	Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken. Molecular Vision, 2010, 16, 144-53.	1.1	2
100	Commonly occurring genetic polymorphisms with a major impact on the risk of nonsyndromic strabismus: replication in a sample from Finland. Journal of AAPOS, 2022, 26, 12.e1-12.e6.	0.2	2
101	Assessing the contribution of genetic nurture to refractive error. European Journal of Human Genetics, 2022, 30, 1226-1232.	1.4	2
102	Graphics processing unit-based dispersion encoded full-range frequency domain OCT. Proceedings of SPIE, 2012, , .	0.8	0
103	An introduction to Point-Counterpoint articles. Ophthalmic and Physiological Optics, 2013, 33, 354-354.	1.0	0
104	Evidence For and Against Genetic Testing to Identify Children at Risk of High Myopia. Ophthalmology, 2019, 126, 1615-1616.	2.5	0