Ca Stedmon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/786198/ca-stedmon-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

111	13,783	52	117
papers	citations	h-index	g-index
125	16,645 ext. citations	4.9	6.87
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
111	Anthropogenic U and U in the Baltic Sea: Distributions, source terms, and budgets <i>Water Research</i> , 2021 , 210, 117987	12.5	O
110	Terrestrial Dissolved Organic Matter Mobilized From Eroding Permafrost Controls Microbial Community Composition and Growth in Arctic Coastal Zones. <i>Frontiers in Earth Science</i> , 2021 , 9,	3.5	1
109	Insights into the origins, molecular characteristics and distribution of iron-binding ligands in the Arctic Ocean. <i>Marine Chemistry</i> , 2021 , 231, 103936	3.7	5
108	Insights Into Water Mass Origins in the Central Arctic Ocean From In-Situ Dissolved Organic Matter Fluorescence. <i>Journal of Geophysical Research: Oceans</i> , 2021 , 126, e2021JC017407	3.3	4
107	Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries. <i>Biogeochemistry</i> , 2021 , 154, 385-403	3.8	7
106	Identifying Drivers of Seasonality in Lena River Biogeochemistry and Dissolved Organic Matter Fluxes. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	18
105	The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean. <i>Journal of Geophysical Research: Oceans</i> , 2020 , 125, e2019JC015920	3.3	42
104	A Decade of Annual Arctic DOC Export With Polar Surface Water in the East Greenland Current. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089686	4.9	2
103	Classification and Quantification of Microplastics (. <i>Analytical Chemistry</i> , 2020 , 92, 13724-13733	7.8	37
102	Emerging patterns in the global distribution of dissolved organic matter fluorescence. <i>Analytical Methods</i> , 2019 , 11, 888-893	3.2	28
101	Biological transformation of Arctic dissolved organic matter in a NE Greenland fjord. <i>Limnology and Oceanography</i> , 2019 , 64, 1014-1033	4.8	8
100	Sediment alkaline-extracted organic matter (AEOM) fluorescence: An archive of Holocene marine organic matter origins. <i>Science of the Total Environment</i> , 2019 , 676, 298-304	10.2	2
99	The Influence of Sediment-Derived Dissolved Organic Matter in the Vistula River Estuary/Gulf of Gdansk. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 115-126	3.7	10
98	Variability of the Pacific-Derived Arctic Water Over the Southeastern Wandel Sea Shelf (Northeast Greenland) in 20152016. <i>Journal of Geophysical Research: Oceans</i> , 2019 , 124, 349-373	3.3	5
97	Unraveling the size-dependent optical properties of dissolved organic matter. <i>Limnology and Oceanography</i> , 2018 , 63, 588-601	4.8	23
96	The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State. <i>Analytical Chemistry</i> , 2018 , 90, 14188-14197	7.8	22
95	Investigating Fluorescent Organic-Matter Composition as a Key Predictor for Arsenic Mobility in Groundwater Aquifers. <i>Environmental Science & Environmental Science & Environ</i>	10.3	35

(2016-2018)

94	Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition. <i>Marine Chemistry</i> , 2018 , 207, 33-41	3.7	22
93	Photochemistry Illuminates Ubiquitous Organic Matter Fluorescence Spectra. <i>Environmental Science & Environmental Science & En</i>	10.3	62
92	Examples of unwanted variation when characterising dissolved organic matter using direct injection electrospray mass spectrometry and chemometrics. <i>Analytical Methods</i> , 2018 , 10, 2636-2646	3.2	1
91	Changes in distributional patterns of plaice Pleuronectes platessa in the central and eastern North Sea; do declining nutrient loadings play a role?. <i>Journal of Sea Research</i> , 2017 , 127, 164-172	1.9	5
90	The One-Sample PARAFAC Approach Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic Matter. <i>Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions of Fluorescent Components in Dissolved Organic Matter. Environmental Science & Distributions Organic Matter Components in Dissolved Organic Matter Components (Components Components </i>	9 1 8.3	66
89	Evidence of local and regional freshening of Northeast Greenland coastal waters. <i>Scientific Reports</i> , 2017 , 7, 13183	4.9	35
88	Spectral signature of suspended fine particulate material on light absorption properties of CDOM. <i>Marine Chemistry</i> , 2017 , 196, 98-106	3.7	6
87	Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. <i>Science of the Total Environment</i> , 2017 , 609, 180-191	10.2	99
86	Assessment of drinking water quality at the tap using fluorescence spectroscopy. <i>Water Research</i> , 2017 , 125, 1-10	12.5	73
85	Calibration, standardization, and quantitative analysis of multidimensional fluorescence (MDF) measurements on complex mixtures (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2017 , 89, 1849-1870	2.1	12
84	Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. <i>Marine Environmental Research</i> , 2017 , 129, 374-385	3.3	21
83	Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. <i>ICES Journal of Marine Science</i> , 2017 , 74, 326-331	2.7	109
82	Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 3431-3445	3.7	28
81	Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. <i>Frontiers in Marine Science</i> , 2017 , 4,	4.5	29
80	The Effect of Increased Loads of Dissolved Organic Matter on Estuarine Microbial Community Composition and Function. <i>Frontiers in Microbiology</i> , 2017 , 8, 351	5.7	48
79	Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. <i>ISME Journal</i> , 2016 , 10, 533-45	11.9	197
78	Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean. <i>Continental Shelf Research</i> , 2016 , 119, 1-13	2.4	16
77	Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters. <i>Frontiers in Microbiology</i> , 2016 , 7, 1533	5.7	11

76	Drivers of fluorescent dissolved organic matter in the global epipelagic ocean. <i>Limnology and Oceanography</i> , 2016 , 61, 1101-1119	4.8	33
75	Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters. <i>Scientific Reports</i> , 2016 , 6, 33978	4.9	55
74	Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. <i>Journal of Marine Systems</i> , 2015 , 143, 62-72	2.7	34
73	Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy. <i>Water Research</i> , 2015 , 83, 112-20	12.5	83
72	Abundance, size and polymer composition of marine microplastics 10th in the Atlantic Ocean and their modelled vertical distribution. <i>Marine Pollution Bulletin</i> , 2015 , 100, 70-81	6.7	385
71	A model of extracellular enzymes in free-living microbes: which strategy pays off?. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 7385-93	4.8	44
70	A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. <i>Marine Pollution Bulletin</i> , 2015 , 100, 82-91	6.7	407
69	The Optical Properties of DOM in the Ocean 2015 , 481-508		62
68	Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. <i>Journal of Geophysical Research: Oceans</i> , 2015 , 120, 7028-7039	3.3	30
67	An approach to estimate the freshwater contribution from glacial melt and precipitation in East Greenland shelf waters using colored dissolved organic matter (CDOM). <i>Journal of Geophysical Research: Oceans</i> , 2015 , 120, 1107-1117	3.3	24
66	Recent decrease in DOC concentrations in Arctic lakes of southwest Greenland. <i>Geophysical Research Letters</i> , 2015 , 42, 6703-6709	4.9	25
65	Mass and UV-visible spectral fingerprints of dissolved organic matter: sources and reactivity. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	9
64	Fluorescence Quantum Yields of Natural Organic Matter and Organic Compounds: Implications for the Fluorescence-based Interpretation of Organic Matter Composition. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	71
63	Microbially-Mediated Fluorescent Organic Matter Transformations in the Deep Ocean. Do the Chemical Precursors Matter?. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	11
62	From Fresh to Marine Waters: Characterization and Fate of Dissolved Organic Matter in the Lena River Delta Region, Siberia. <i>Frontiers in Marine Science</i> , 2015 , 2,	4.5	49
61	Changes in the composition and bioavailability of dissolved organic matter during sea ice formation. <i>Limnology and Oceanography</i> , 2015 , 60, 817-830	4.8	15
60	The influence of glacial melt water on bio-optical properties in two contrasting Greenlandic fjords. <i>Estuarine, Coastal and Shelf Science</i> , 2015 , 163, 72-83	2.9	49
59	Turnover time of fluorescent dissolved organic matter in the dark global ocean. <i>Nature Communications</i> , 2015 , 6, 5986	17.4	121

(2012-2014)

58	Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients. <i>Aquatic Sciences</i> , 2014 , 76, 451-463	2.5	41
57	Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change. <i>Aquatic Sciences</i> , 2014 , 76, 393-404	2.5	34
56	Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 12543-51	10.3	10
55	OpenFluorlan online spectral library of auto-fluorescence by organic compounds in the environment. <i>Analytical Methods</i> , 2014 , 6, 658-661	3.2	422
54	Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. <i>Global Change Biology</i> , 2014 , 20, 1101-14	11.4	207
53	Physical and bacterial controls on inorganic nutrients and dissolved organic carbon during a sea ice growth and decay experiment. <i>Marine Chemistry</i> , 2014 , 166, 59-69	3.7	17
52	Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. <i>Geophysical Research Letters</i> , 2014 , 41, 2481-2488	4.9	60
51	Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments. <i>Biogeosciences</i> , 2014 , 11, 3409-3419	4.6	21
50	Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater. <i>Biogeosciences</i> , 2014 , 11, 5349-5363	4.6	9
49	Selective incorporation of dissolved organic matter (DOM) during sea ice formation. <i>Marine Chemistry</i> , 2013 , 155, 148-157	3.7	33
48	Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 2013, 5, 6557	3.2	862
47	Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 1689-1702	3.7	84
46	Inner filter correction of dissolved organic matter fluorescence. <i>Limnology and Oceanography: Methods</i> , 2013 , 11, 616-630	2.6	167
45	Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. <i>Biogeosciences</i> , 2013 , 10, 6969-6986	4.6	99
44	Lake metabolism scales with lake morphometry and catchment conditions. <i>Aquatic Sciences</i> , 2012 , 74, 155-169	2.5	75
43	Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		61
42	Dissolved organic matter sources in large Arctic rivers. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 94, 217-	-253.7	162
41	The freshwater composition of the Fram Strait outflow derived from a decade of tracer measurements. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		49

40	Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries. <i>Estuarine, Coastal and Shelf Science</i> , 2012 , 111, 107-117	2.9	51
39	Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. <i>Limnology and Oceanography</i> , 2012 , 57, 634-644	4.8	53
38	Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. <i>Journal of Geophysical Research</i> , 2011 , 116,		71
37	The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2011 , 58, 1075-	16931	58
36	Monitoring organic loading to swimming pools by fluorescence excitation-emission matrix with parallel factor analysis (PARAFAC). <i>Water Research</i> , 2011 , 45, 2306-14	12.5	41
35	A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events. <i>Water Research</i> , 2011 , 45, 6030-8	12.5	126
34	Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. <i>Marine Chemistry</i> , 2011 , 126, 139-148	3.7	244
33	Linking the chemical and optical properties of dissolved organic matter in the BalticNorth Sea transition zone to differentiate three allochthonous inputs. <i>Marine Chemistry</i> , 2011 , 126, 281-294	3.7	118
32	Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord. <i>Estuarine, Coastal and Shelf Science</i> , 2011 , 92, 376-388	2.9	53
31	The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. <i>Marine Chemistry</i> , 2011 , 124, 108-118	3.7	191
30	Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis. <i>Marine Chemistry</i> , 2011 , 124, 125-133	3.7	96
29	Phytoplankton growth and microzooplankton grazing along a sub-Arctic fjord (Godth B sfjord, west Greenland). <i>Marine Ecology - Progress Series</i> , 2011 , 442, 11-22	2.6	31
28	Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. <i>Environmental Science & Environmental Sc</i>	10.3	418
27	Tracing water mass mixing in the BalticNorth Sea transition zone using the optical properties of coloured dissolved organic matter. <i>Estuarine, Coastal and Shelf Science,</i> 2010 , 87, 156-162	2.9	51
26	Fluorescence intensity calibration using the Raman scatter peak of water. <i>Applied Spectroscopy</i> , 2009 , 63, 936-40	3.1	633
25	The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. <i>Journal of Geophysical Research</i> , 2009 , 114,		111
24	Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 2008 , 6, 572-579	2.6	1436
23	Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 2008 , 6, 572-579	2.6	128

22	Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. <i>Marine Chemistry</i> , 2008 , 108, 40-58	3.7	517
21	Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins?. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	187
20	Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. <i>Marine Chemistry</i> , 2007 , 104, 227-240	3.7	222
19	The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. <i>Marine Chemistry</i> , 2007 , 107, 357-366	3.7	103
18	The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. <i>Freshwater Biology</i> , 2007 , 52, 280-289	3.1	78
17	Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. <i>Estuaries and Coasts</i> , 2006 , 29, 388-400	2.8	79
16	Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. <i>Journal of Chemometrics</i> , 2006 , 20, 99-105	1.6	344
15	Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. <i>Marine Chemistry</i> , 2006 , 101, 1-11	3.7	100
14	Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. <i>Limnology and Oceanography</i> , 2005 , 50, 1415-1426	4.8	411
13	Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. <i>Limnology and Oceanography</i> , 2005 , 50, 686-697	4.8	703
12	Interactions between algal-bacterial populations and trace metals in fjord surface waters during a nutrient-stimulated summer bloom. <i>Limnology and Oceanography</i> , 2005 , 50, 1855-1871	4.8	19
11	Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. <i>Aquatic Sciences</i> , 2004 , 66, 27-46	2.5	51
10	Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. <i>Estuarine, Coastal and Shelf Science</i> , 2003 , 57, 973-979	2.9	133
9	Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. <i>Marine Chemistry</i> , 2003 , 82, 239-254	3.7	1296
8	Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability. <i>Ophelia</i> , 2003 , 57, 161-176		84
7	The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter. <i>Limnology and Oceanography</i> , 2001 , 46, 2087-2093	4.8	144
6	Optical Properties and Signatures of Chromophoric Dissolved Organic Matter (CDOM) in Danish Coastal Waters. <i>Estuarine, Coastal and Shelf Science</i> , 2000 , 51, 267-278	2.9	337
5	Biological Origins and Fate of Fluorescent Dissolved Organic Matter in Aquatic Environments278-300		17

4	Chemometric Analysis or Organic Matter Fluorescence339-375		31
3	FluoRAS Sensor - Online organic matter for optimising recirculating aquaculture systems. <i>Research Ideas and Outcomes</i> ,4, e23957	2.5	1
2	Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land-use		2
1	Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater		2