Mitchel Tate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7861720/publications.pdf

Version: 2024-02-01

566801 610482 23 935 15 citations h-index papers

g-index 26 26 26 1631 all docs docs citations times ranked citing authors

24

#	Article	IF	CITATIONS
1	Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovascular Research, 2022, 118, 212-225.	1.8	47
2	Current landscape of preclinical models of diabetic cardiomyopathy. Trends in Pharmacological Sciences, 2022, 43, 940-956.	4.0	8
3	Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy – current and future perspectives. Clinical Science, 2021, 135, 1369-1387.	1.8	8
4	Characterisation of the Myocardial Mitochondria Structural and Functional Phenotype in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Physiology, 2021, 12, 672252.	1.3	6
5	Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Pharmacology, 2021, 12, 719290.	1.6	8
6	Editorial: Translational Approaches for Targeting Cardiovascular Complications of Diabetes. Frontiers in Pharmacology, 2021, 12, 799020.	1.6	0
7	The Role of Bone Morphogenetic Proteins in Diabetic Complications. ACS Pharmacology and Translational Science, 2020, 3, 11-20.	2.5	17
8	Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2020, 34, 823-834.	1.3	9
9	Gene therapy targeting cardiac phosphoinositide 3-kinase (p $110\hat{l}_{\pm}$) attenuates cardiac remodeling in type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H840-H852.	1.5	32
10	The Mitochondria-Targeted Methylglyoxal Sequestering Compound, MitoGamide, Is Cardioprotective in the Diabetic Heart. Cardiovascular Drugs and Therapy, 2019, 33, 669-674.	1.3	15
11	Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac2-26, Against Myocardial Infarction. Frontiers in Pharmacology, 2019, 10, 269.	1.6	30
12	Characterising an Alternative Murine Model of Diabetic Cardiomyopathy. Frontiers in Physiology, 2019, 10, 1395.	1.3	29
13	Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clinical and Translational Immunology, 2018, 7, e1016.	1.7	119
14	Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Frontiers in Physiology, 2018, 9, 114.	1.3	150
15	Gremlin1 plays a key role in kidney development and renal fibrosis. American Journal of Physiology - Renal Physiology, 2017, 312, F1141-F1157.	1.3	58
16	Are targeted therapies for diabetic cardiomyopathy on the horizon?. Clinical Science, 2017, 131, 897-915.	1.8	83
17	Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diabetes and Vascular Disease Research, 2017, 14, 423-433.	0.9	35
18	The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovascular Diabetology, 2017, 16, 33.	2.7	80

MITCHEL TATE

#	Article	IF	CITATION
19	Endogenous Annexin-A1 Regulates Haematopoietic Stem Cell Mobilisation and Inflammatory Response Post Myocardial Infarction in Mice In Vivo. Scientific Reports, 2017, 7, 16615.	1.6	38
20	Metabolically-inactive glucagon-like peptide- $1(9\hat{a}\in 36)$ amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovascular Diabetology, 2016, 15, 65.	2.7	25
21	Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology, 2016, 111, 1.	2.5	57
22	Selective targeting of glucagon $\hat{a} \in \mathbb{N}$ ike peptide $\hat{a} \in \mathbb{N}$ signalling as a novel therapeutic approach for cardiovascular disease in diabetes. British Journal of Pharmacology, 2015, 172, 721-736.	2.7	21
23	Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology, 2015, 110, 20.	2.5	57