Natalie A. Sims

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7861550/publications.pdf Version: 2024-02-01

		17429	21521
182	14,210	63	114
papers	citations	h-index	g-index
191	191	191	15278
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, 116, 4815-4828.	0.6	695
2	Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in Molecular Medicine, 2005, 11, 76-81.	3.5	550
3	Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 2014, 3, 481.	2.7	536
4	Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Seminars in Cell and Developmental Biology, 2008, 19, 444-451.	2.3	383
5	Rb Regulates Interactions between Hematopoietic Stem Cells and Their BoneÂMarrow Microenvironment. Cell, 2007, 129, 1081-1095.	13.5	380
6	Osteoprotegerin Reduces Osteoclast Numbers and Prevents Bone Erosion in Collagen-Induced Arthritis. American Journal of Pathology, 2002, 161, 1419-1427.	1.9	352
7	Activated parathyroid hormone/parathyroid hormone–related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. Journal of Clinical Investigation, 2001, 107, 277-286.	3.9	338
8	Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Medicine, 2000, 6, 985-990.	15.2	325
9	Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-β in bone remodeling in females but not in males. Bone, 2002, 30, 18-25.	1.4	309
10	Decreased C-Src Expression Enhances Osteoblast Differentiation and Bone Formation. Journal of Cell Biology, 2000, 151, 311-320.	2.3	275
11	The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16511-16516.	3.3	273
12	Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. Journal of Clinical Investigation, 2010, 120, 582-592.	3.9	245
13	Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. Journal of Clinical Investigation, 2009, 119, 837-851.	3.9	244
14	Model structure and control of bone remodeling: A theoretical study. Bone, 2008, 43, 249-263.	1.4	237
15	Interleukin-6 modulates production of T lymphocyte–derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis and Rheumatism, 2006, 54, 158-168.	6.7	235
16	Quantifying the osteocyte network in the human skeleton. Bone, 2015, 75, 144-150.	1.4	226
17	Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5. Journal of Clinical Investigation, 2000, 106, 1095-1103.	3.9	225
18	Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in <i>Pyk2â^'/â^'</i> mice. Journal of Cell Biology, 2007, 178, 1053-1064.	2.3	208

#	Article	IF	CITATIONS
19	Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. Journal of Cell Biology, 2004, 167, 925-934.	2.3	198
20	EphrinB2 Regulation by PTH and PTHrP Revealed by Molecular Profiling in Differentiating Osteoblasts. Journal of Bone and Mineral Research, 2008, 23, 1170-1181.	3.1	191
21	SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. Journal of Clinical Investigation, 2006, 116, 1571-1581.	3.9	184
22	Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. Journal of Clinical Investigation, 2004, 113, 379-389.	3.9	175
23	Cardiotrophin-1 Is an Osteoclast-Derived Stimulus of Bone Formation Required for Normal Bone Remodeling. Journal of Bone and Mineral Research, 2008, 23, 2025-2032.	3.1	163
24	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2011, 14, 684-699.	7.2	162
25	A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice. Journal of Clinical Investigation, 2003, 111, 1319-1327.	3.9	161
26	RANKL/OPG; Critical role in bone physiology. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 131-139.	2.6	158
27	Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB Journal, 2000, 14, 1908-1916.	0.2	155
28	Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annual Review of Physiology, 2020, 82, 507-529.	5.6	154
29	Molecular Mechanisms in Coupling of Bone Formation to Resorption. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 73-88.	0.4	142
30	Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. Arthritis and Rheumatism, 2004, 50, 2338-2346.	6.7	141
31	Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface?. Frontiers in Endocrinology, 2015, 6, 41.	1.5	140
32	Interleukin-11 Receptor Signaling Is Required for Normal Bone Remodeling. Journal of Bone and Mineral Research, 2005, 20, 1093-1102.	3.1	138
33	Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia, 2012, 26, 1594-1601.	3.3	136
34	The Heat Shock Protein 90 Inhibitor, 17-Allylamino-17-demethoxygeldanamycin, Enhances Osteoclast Formation and Potentiates Bone Metastasis of a Human Breast Cancer Cell Line. Cancer Research, 2005, 65, 4929-4938.	0.4	133
35	Neurological heterotopic ossification following spinal cord injury is triggered by macrophageâ€mediated inflammation in muscle. Journal of Pathology, 2015, 236, 229-240.	2.1	131
36	Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood, 2011, 117, 5631-5642.	0.6	123

#	Article	IF	CITATIONS
37	The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in mev/mev mutant mice. Bone, 1999, 25, 261-267.	1.4	108
38	Intercellular Cross-Talk Among Bone Cells: New Factors and Pathways. Current Osteoporosis Reports, 2012, 10, 109-117.	1.5	107
39	Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6040-6045.	3.3	107
40	GP130 cytokines and bone remodelling in health and disease. BMB Reports, 2010, 43, 513-523.	1.1	105
41	Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Archives of Biochemistry and Biophysics, 2014, 561, 22-28.	1.4	104
42	Theoretical investigation of the role of the RANK–RANKL–OPG system in bone remodeling. Journal of Theoretical Biology, 2010, 262, 306-316.	0.8	102
43	Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone, 2010, 46, 1486-1497.	1.4	102
44	Bindarit, an Inhibitor of Monocyte Chemotactic Protein Synthesis, Protects against Bone Loss Induced by Chikungunya Virus Infection. Journal of Virology, 2015, 89, 581-593.	1.5	98
45	Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. International Journal of Biochemistry and Cell Biology, 2016, 79, 14-23.	1.2	96
46	EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. Journal of Bone and Mineral Research, 2013, 28, 912-925.	3.1	93
47	Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. Journal of Clinical Investigation, 2011, 121, 3492-3504.	3.9	91
48	A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor–deficient mice. Journal of Clinical Investigation, 2003, 111, 1319-1327.	3.9	91
49	The Primary Function of gp130 Signaling in Osteoblasts Is To Maintain Bone Formation and Strength, Rather Than Promote Osteoclast Formation. Journal of Bone and Mineral Research, 2014, 29, 1492-1505.	3.1	90
50	What is the true nature of the osteoblastic hematopoietic stem cell niche?. Trends in Endocrinology and Metabolism, 2009, 20, 303-309.	3.1	89
51	Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight, 2017, 2, .	2.3	87
52	IL-23 Inhibits Osteoclastogenesis Indirectly through Lymphocytes and Is Required for the Maintenance of Bone Mass in Mice. Journal of Immunology, 2008, 181, 5720-5729.	0.4	85
53	Increased bone resorption precedes increased bone formation in the ovariectomized rat. Calcified Tissue International, 1996, 59, 121-127.	1.5	82
54	The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. Journal of Bone and Mineral Research, 2010, 25, 1759-1770.	3.1	80

#	Article	IF	CITATIONS
55	EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation. Bone, 2011, 48, 533-542.	1.4	79
56	A Novel Mutation in the <i>Nfkb2</i> Gene Generates an NF-κB2 "Super Repressor― Journal of Immunology, 2007, 179, 7514-7522.	0.4	77
57	Quantitative and functional characterization of muscarinic receptor subtypes in insulin-secreting cell lines and rat pancreatic islets. Diabetes, 2000, 49, 392-398.	0.3	75
58	Communication Between EphrinB2 and EphB4 Within the Osteoblast Lineage. Advances in Experimental Medicine and Biology, 2009, 658, 51-60.	0.8	75
59	Perinatal testosterone surge is required for normal adult bone size but not for normal bone remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E456-E462.	1.8	73
60	Osteoprotegerin Overexpression by Breast Cancer Cells Enhances Orthotopic and Osseous Tumor Growth and Contrasts with That Delivered Therapeutically. Cancer Research, 2006, 66, 3620-3628.	0.4	73
61	Zinc Finger Protein 467 Is a Novel Regulator of Osteoblast and Adipocyte Commitment. Journal of Biological Chemistry, 2011, 286, 4186-4198.	1.6	71
62	EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB Journal, 2014, 28, 4482-4496.	0.2	70
63	Generation and Analysis of Siah2 Mutant Mice. Molecular and Cellular Biology, 2003, 23, 9150-9161.	1.1	69
64	Human and Murine Osteocalcin Gene Expression: Conserved Tissue Restricted Expression and Divergent Responses to 1,25-Dihydroxyvitamin D3in Vivo. Molecular Endocrinology, 1997, 11, 1695-1708.	3.7	65
65	Lack of Sustained Response to Teriparatide in a Patient with Adult Hypophosphatasia. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1007-1012.	1.8	65
66	Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization. Journal of Bone and Mineral Research, 2012, 27, 586-595.	3.1	65
67	Ciliary Neurotrophic Factor Inhibits Bone Formation and Plays a Sex-Specific Role in Bone Growth and Remodeling. Calcified Tissue International, 2010, 86, 261-270.	1.5	62
68	gp130-Mediated Signaling Is Necessary for Normal Osteoblastic Function in Vivo and in Vitro. Endocrinology, 2004, 145, 1376-1385.	1.4	60
69	Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. BoneKEy Reports, 2014, 3, 527.	2.7	58
70	Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends in Microbiology, 2015, 23, 35-43.	3.5	58
71	Skeletal recovery after weaning does not require PTHrP. Journal of Bone and Mineral Research, 2011, 26, 1242-1251.	3.1	55
72	The Chemokine Cxcl1 Is a Novel Target Gene of Parathyroid Hormone (PTH)/PTH-Related Protein in Committed Osteoblasts. Endocrinology, 2009, 150, 2244-2253.	1.4	54

#	Article	IF	CITATIONS
73	Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. Journal of Bone and Mineral Research, 2018, 33, 137-153.	3.1	54
74	IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. Journal of Biological Chemistry, 2019, 294, 7850-7863.	1.6	54
75	Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone, 2014, 64, 47-56.	1.4	53
76	Implications of Osteoblast-Osteoclast Interactions in the Management of Osteoporosis by Antiresorptive Agents Denosumab and Odanacatib. Current Osteoporosis Reports, 2014, 12, 98-106.	1.5	53
77	Germline deletion of AMPâ€activated protein kinase β subunits reduces bone mass without altering osteoclast differentiation or function. FASEB Journal, 2010, 24, 275-285.	0.2	52
78	Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. Journal of Clinical Investigation, 2018, 128, 2406-2418.	3.9	51
79	Mechanisms Involved in Skeletal Anabolic Therapies. Annals of the New York Academy of Sciences, 2006, 1068, 458-470.	1.8	50
80	Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. Journal of Bone and Mineral Research, 2012, 27, 902-912.	3.1	49
81	Matrix Metalloproteinases Are Not Essential for Aggrecan Turnover during Normal Skeletal Growth and Development. Molecular and Cellular Biology, 2005, 25, 3388-3399.	1.1	48
82	Leukemia inhibitory factor: A paracrine mediator of bone metabolism. Growth Factors, 2012, 30, 76-87.	0.5	48
83	Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nature Communications, 2019, 10, 3436.	5.8	48
84	Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone, 2015, 81, 343-351.	1.4	47
85	Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) Regulates Hematopoiesis and Bone Formation In Vivo. PLoS ONE, 2010, 5, e13086.	1.1	47
86	The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology. Experimental and Molecular Medicine, 2020, 52, 1185-1197.	3.2	45
87	Adverse effects of valproate on bone: Defining a model to investigate the pathophysiology. Epilepsia, 2010, 51, 984-993.	2.6	43
88	EphB4 enhances the process of endochondral ossification and inhibits remodeling during bone fracture repair. Journal of Bone and Mineral Research, 2013, 28, 926-935.	3.1	42
89	Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone, 2015, 72, 34-42.	1.4	42
90	gp130 signaling in bone cell biology: Multiple roles revealed by analysis of genetically altered mice. Molecular and Cellular Endocrinology, 2009, 310, 30-39.	1.6	41

#	Article	IF	CITATIONS
91	Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocrine Reviews, 2021, 42, 383-406.	8.9	41
92	Regulatory pathways revealing new approaches to the development of anabolic drugs for osteoporosis. Osteoporosis International, 2008, 19, 1125-1138.	1.3	39
93	Murine Oncostatin M Acts via Leukemia Inhibitory Factor Receptor to Phosphorylate Signal Transducer and Activator of Transcription 3 (STAT3) but Not STAT1, an Effect That Protects Bone Mass. Journal of Biological Chemistry, 2016, 291, 21703-21716.	1.6	39
94	Oncostatin M acting via OSMR, augments the actions of IL-1 and TNF in synovial fibroblasts. Cytokine, 2014, 68, 101-109.	1.4	38
95	High dose dietary vitamin D 3 increases bone mass and strength in mice. Bone Reports, 2017, 6, 44-50.	0.2	38
96	An Ethyl-Nitrosourea-Induced Point Mutation in Phex Causes Exon Skipping, X-Linked Hypophosphatemia, and Rickets. American Journal of Pathology, 2002, 161, 1925-1933.	1.9	37
97	Dissociation of Bone Resorption and Bone Formation in Adult Mice with a Non-Functional V-ATPase in Osteoclasts Leads to Increased Bone Strength. PLoS ONE, 2011, 6, e27482.	1.1	36
98	Loss of Gsα in the Postnatal Skeleton Leads to Low Bone Mass and a Blunted Response to Anabolic Parathyroid Hormone Therapy. Journal of Biological Chemistry, 2016, 291, 1631-1642.	1.6	36
99	Osteoclast inhibitory lectin (OCIL) inhibits osteoblast differentiation and function in vitro. Bone, 2007, 40, 305-315.	1.4	34
100	The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 2015, 11, e1005160.	1.5	34
101	Severe developmental bone phenotype in ClC-7 deficient mice. Developmental Biology, 2010, 344, 1001-1010.	0.9	33
102	Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice. PLoS ONE, 2012, 7, e36703.	1.1	33
103	Cardiotrophin-like cytokine factor 1 (CLCF1) and neuropoietin (NP) signalling and their roles in development, adulthood, cancer and degenerative disorders. Cytokine and Growth Factor Reviews, 2015, 26, 517-522.	3.2	33
104	Estradiol treatment transiently increases trabecular bone volume in ovariectomized rats. Bone, 1996, 19, 455-461.	1.4	32
105	Apo2L/TRAIL Inhibits Tumor Growth and Bone Destruction in a Murine Model of Multiple Myeloma. Clinical Cancer Research, 2009, 15, 1998-2009.	3.2	32
106	Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6. Nature Communications, 2017, 8, 806.	5.8	32
107	IL-6 trans -signalling mediates trabecular, but not cortical, bone loss after ovariectomy. Bone, 2018, 112, 120-127.	1.4	32
108	Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cellular and Molecular Life Sciences, 2021, 78, 5755-5773.	2.4	32

#	Article	IF	CITATIONS
109	Lactating Ctcgrp Nulls Lose Twice the Normal Bone Mineral Content due to Fewer Osteoblasts and More Osteoclasts, Whereas Bone Mass Is Fully Restored After Weaning in Association With Up-Regulation of Wnt Signaling and Other Novel Genes. Endocrinology, 2013, 154, 1400-1413.	1.4	29
110	Osteoclast Inhibitory Lectin, an Immune Cell Product That Is Required for Normal Bone Physiology in Vivo. Journal of Biological Chemistry, 2008, 283, 30850-30860.	1.6	28
111	Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E23-E31.	1.8	28
112	Talking among Ourselves: Paracrine Control of Bone Formation within the Osteoblast Lineage. Calcified Tissue International, 2014, 94, 35-45.	1.5	28
113	Parthenolide inhibits pro-inflammatory cytokine production and exhibits protective effects on progression of collagen-induced arthritis in a rat model. Scandinavian Journal of Rheumatology, 2015, 44, 182-191.	0.6	28
114	Vaginally Administered PEGylated LIF Antagonist Blocked Embryo Implantation and Eliminated Non-Target Effects on Bone in Mice. PLoS ONE, 2011, 6, e19665.	1.1	26
115	gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. Journal of Endocrinology, 2014, 223, 181-190.	1.2	26
116	Absence of Calcitriol Causes Increased Lactational Bone Loss and Lower Milk Calcium but Does Not Impair Post-lactation Bone Recovery in <i>Cyp27b1</i> Null Mice. Journal of Bone and Mineral Research, 2018, 33, 16-26.	3.1	26
117	Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone, 2012, 50, 704-712.	1.4	25
118	RARÎ ³ is a negative regulator of osteoclastogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 46-53.	1.2	25
119	Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone, 2016, 93, 146-154.	1.4	25
120	Chondrocytic EphrinB2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development (Cambridge), 2016, 143, 648-57.	1.2	25
121	Parathyroid Hormone-Related Protein Negatively Regulates Tumor Cell Dormancy Genes in a PTHR1/Cyclic AMP-Independent Manner. Frontiers in Endocrinology, 2018, 9, 241.	1.5	25
122	The Increased Bone Mass in ΔFosB Transgenic Mice Is Independent of Circulating Leptin Levels. Endocrinology, 2002, 143, 4304-4309.	1.4	24
123	Prospective Histomorphometric and DXA Evaluation of Bone Remodeling in Imatinib-Treated CML Patients: Evidence for Site-Specific Skeletal Effects. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 67-76.	1.8	24
124	Ubiquitous expression of the <i> Pik3ca ^{H1047R} </i> mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. FASEB Journal, 2015, 29, 1426-1434.	0.2	24
125	Regulating ΔFosB expression in adult tet-off-ΔFosB transgenic mice alters bone formation and bone mass. Bone, 2002, 30, 32-39.	1.4	23
126	Osteopontin is An Important Regulative Component of the Fetal Bone Marrow Hematopoietic Stem Cell Niche. Cells, 2019, 8, 985.	1.8	23

#	Article	IF	CITATIONS
127	Effect of rapamycin on bone mass and strength in the α2(I) 610C mouse model of osteogenesis imperfecta. Journal of Cellular and Molecular Medicine, 2019, 23, 1735-1745.	1.6	22
128	Prepubertal Di-n-Butyl Phthalate Exposure Alters Sertoli and Leydig Cell Function and Lowers Bone Density in Adult Male Mice. Endocrinology, 2016, 157, 2595-2603.	1.4	21
129	Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Current Osteoporosis Reports, 2019, 17, 270-280.	1.5	21
130	Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. ELife, 2020, 9, .	2.8	21
131	Decline in calcitonin receptor expression in osteocytes with age. Journal of Endocrinology, 2014, 221, 181-191.	1.2	20
132	Retinoic Acid Receptor γ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis. Journal of Bone and Mineral Research, 2018, 33, 2202-2213.	3.1	20
133	Calcitonin Physiology, Saved by a Lysophospholipid. Journal of Bone and Mineral Research, 2015, 30, 212-215.	3.1	19
134	Does Apo2L/TRAIL play any physiologic role in osteoclastogenesis?. Blood, 2008, 111, 5411-5412.	0.6	18
135	Building bone with a <i>SOST</i> -PTH partnership. Journal of Bone and Mineral Research, 2010, 25, 175-177.	3.1	18
136	Macrophages Driving Heterotopic Ossification: Convergence of Genetically-Driven and Trauma-Driven Mechanisms. Journal of Bone and Mineral Research, 2018, 33, 365-366.	3.1	17
137	Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. Journal of Musculoskeletal Neuronal Interactions, 2008, 8, 308-10.	0.1	16
138	Regulation of Sclerostin Expression by Paracrine and Endocrine Factors. Clinical Reviews in Bone and Mineral Metabolism, 2012, 10, 98-107.	1.3	14
139	Cell–Cell Signaling: Broadening Our View of the Basic Multicellular Unit. Calcified Tissue International, 2014, 94, 2-3.	1.5	14
140	Deleting Suppressor of Cytokine Signaling-3 in chondrocytes reduces bone growth by disrupting mitogen-activated protein kinase signaling. Osteoarthritis and Cartilage, 2019, 27, 1557-1563.	0.6	14
141	Measuring Bone Volume at Multiple Densities by Micro-computed Tomography. Bio-protocol, 2021, 11, e3873.	0.2	14
142	Differing Effects of Parathyroid Hormone, Alendronate, and Odanacatib on Bone Formation and on the Mineralization Process in Intracortical and Endocortical Bone of Ovariectomized Rabbits. Calcified Tissue International, 2018, 103, 625-637.	1.5	13
143	Disrupted type II collagenolysis impairs angiogenesis, delays endochondral ossification and initiates aberrant ossification in mouse limbs. Matrix Biology, 2019, 83, 77-96.	1.5	12
144	Osteopenia in Siah1a Mutant Mice. Journal of Biological Chemistry, 2004, 279, 29583-29588.	1.6	11

#	Article	IF	CITATIONS
145	EPHs and ephrins: Many pathways to regulate osteoblasts and osteoclasts. IBMS BoneKEy, 2010, 7, 304-313.	0.1	11
146	Senescent Osteocytes: Do They Cause Damage and Can They Be Targeted to Preserve the Skeleton?. Journal of Bone and Mineral Research, 2016, 31, 1917-1919.	3.1	11
147	Intermittent Fugu parathyroid hormone 1 (1–34) is an anabolic bone agent in young male rats and osteopenic ovariectomized rats. Bone, 2008, 42, 1164-1174.	1.4	10
148	Parathyroidectomy does not prevent bone loss in the oophorectomized rat. Journal of Bone and Mineral Research, 1994, 9, 1859-1863.	3.1	10
149	Is RANKL inhibition both anti-resorptive and anabolic in rheumatoid arthritis?. Arthritis Research and Therapy, 2015, 17, 328.	1.6	10
150	Oncostatin M regulates hematopoietic stem cell (HSC) niches in the bone marrow to restrict HSC mobilization. Leukemia, 2022, 36, 333-347.	3.3	10
151	Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochemical Pharmacology, 2019, 169, 113627.	2.0	9
152	Coupling: The Influences of Immune and Bone Cells. , 2016, , 169-185.		8
153	Dynll1 is essential for development and promotes endochondral bone formation by regulating intraflagellar dynein function in primary cilia. Human Molecular Genetics, 2019, 28, 2573-2588.	1.4	8
154	STAT3 Hyperactivation Due to SOCS3 Deletion in Murine Osteocytes Accentuates Responses to Exercise- and Load-Induced Bone Formation. Journal of Bone and Mineral Research, 2020, 37, 547-558.	3.1	8
155	Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. Journal of Immunology, 2018, 200, 632-642.	0.4	7
156	Biomechanical testing of the calcified metacarpal articular surface and its association with subchondral bone microstructure in Thoroughbred racehorses. Equine Veterinary Journal, 2018, 50, 255-260.	0.9	6
157	Adolescent Inhalant Abuse Results in Adrenal Dysfunction and a Hypermetabolic Phenotype with Persistent Growth Impairments. Neuroendocrinology, 2018, 107, 340-354.	1.2	6
158	Asymmetric midshaft femur remodeling in an adult male with left sided hip joint ankylosis, Metal Period Nagsabaran, Philippines. International Journal of Paleopathology, 2020, 31, 14-22.	0.8	6
159	Bone Geometry Is Altered by Follistatinâ€Induced Muscle Growth in Young Adult Male Mice. JBMR Plus, 2021, 5, e10477.	1.3	6
160	EphrinB2 Signalling in Osteoblast Differentiation, Bone Formation and Endochondral Ossification. Current Molecular Biology Reports, 2015, 1, 148-156.	0.8	5
161	Overcoming natural Wnt inhibition to optimize therapy. Nature Reviews Rheumatology, 2019, 15, 67-68.	3.5	5
162	Bone loss markers in the earliest Pacific Islanders. Scientific Reports, 2021, 11, 3981.	1.6	5

#	Article	IF	CITATIONS
163	Rothmund-Thomson Syndrome-Like RECQL4 Truncating Mutations Cause a Haploinsufficient Low-Bone-Mass Phenotype in Mice. Molecular and Cellular Biology, 2021, 41, .	1.1	5
164	Testing Bone Formation Induction by Calvarial Injection Assay in vivo. Bio-protocol, 2020, 10, e3560.	0.2	5
165	Editorial Peer Reviewers as Shepherds, Rather Than Gatekeepers. Journal of Bone and Mineral Research, 2020, 36, 1220-1224.	3.1	4
166	<i>Dmp1Cre-</i> directed knockdown of parathyroid hormone–related protein (PTHrP) in murine decidua is associated with a life-long increase in bone mass, width, and strength in male progeny. Journal of Bone and Mineral Research, 2020, 36, 1999-2016.	3.1	4
167	Interactions Among Osteoblasts, Osteoclasts, and Other Cells in Bone. , 2011, , 227-267.		3
168	Basic Principles of Bone Cell Biology. , 2013, , 5-26.		3
169	Isolation, Purification, Generation, and Culture of Osteocytes. Methods in Molecular Biology, 2019, 1914, 39-51.	0.4	3
170	255 OSTEOARTHRITIC ARTICULAR CARTILAGE EXPRESSES THE PTH RECEPTOR; PTH EFFECTS CARTILAGE METABOLISM. Osteoarthritis and Cartilage, 2011, 19, S122-S123.	0.6	2
171	Embedded in bone, but looking beyond: osteocalcin, epigenetics and ectopic bone formation (ASBMR) Tj ETQq1	1 0.7843	14 ggBT /Over
172	How Cells Communicate in the Bone Remodelling Process. Journal of Korean Endocrine Society, 2010, 25, 1.	0.1	2
173	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2012, 15, 925-926.	7.2	1
174	Integrating Endocrine and Paracrine Influences on Bone. , 2013, , 53-67.		1
175	New insights into osteocyte and osteoblast biology: support of osteoclast formation, PTH action and the role of Wnt16 (ASBMR 2013). IBMS BoneKEy, 2013, 10, .	0.1	1
176	Does anti-sclerostin therapy promote inflammation in rheumatoid arthritis?. Nature Reviews Endocrinology, 2016, 12, 314-316.	4.3	1
177	VPS35: Two Ways to Recycle the Parathyroid Hormone Receptor (PTH1R) in Osteoblasts. EBioMedicine, 2016, 9, 3-4.	2.7	1
178	The Inhibition of the Osteoblast Niche during Hematopoietic Stem Cell Mobilization Is an Indirect Effect Involving Mature Bone Marrow Leukocytes, IL6 and Soluble IL6 Receptor Blood, 2005, 106, 1966-1966.	0.6	1
179	New insights into therapeutic drug interventions for catabolic bone diseases using an in-silico modeling approach. Bone, 2009, 44, S135-S136.	1.4	0
180	Osteocyte cell death in subchondral bone following joint injury correlates with the severity of aggrecan loss in overlying cartilage. Osteoarthritis and Cartilage, 2014, 22, S341-S342.	0.6	0

#	Article	IF	CITATIONS
181	Response to "Letter to the Editor: On osteocyte density in the human body― Bone, 2016, 88, 73.	1.4	0
182	Integrating Endocrine and Paracrine Influences on Bone; Lessons From Parathyroid Hormone and Parathyroid Hormone-Pelated Protein 2018 283-299		0

182 Parathyroid Hormone-Related Protein. , 2018, , 283-299.