
Gabriele Varani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/786074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution structure of an unusually stable RNA hairpin, 5GGAC(UUCG)GUCC. Nature, 1990, 346, 680-682.	13.7	442
2	NMR investigation of RNA structure. Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 29, 51-127.	3.9	332
3	Structure of an unusually stable RNA hairpin. Biochemistry, 1991, 30, 3280-3289.	1.2	331
4	Current Topics in RNAâ^'Protein Recognition:  Control of Specificity and Biological Function through Induced Fit and Conformational Capture. Biochemistry, 2001, 40, 7947-7956.	1.2	320
5	Targeting RNA with Small-Molecule Drugs:Â Therapeutic Promise and Chemical Challenges. Accounts of Chemical Research, 2001, 34, 836-843.	7.6	292
6	RNA RECOGNITION BY RNP PROTEINS DURING RNA PROCESSING. Annual Review of Biophysics and Biomolecular Structure, 1998, 27, 407-445.	18.3	286
7	RNA structure and NMR spectroscopy. Quarterly Reviews of Biophysics, 1991, 24, 479-532.	2.4	252
8	Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Research, 1996, 24, 3974-3981.	6.5	223
9	Reconstitution of the CstF complex unveils a regulatory role for CstF-50 in recognition of 3′-end processing signals. Nucleic Acids Research, 2018, 46, 493-503.	6.5	193
10	Comprehensive computational design of ordered peptide macrocycles. Science, 2017, 358, 1461-1466.	6.0	146
11	α-Sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8895-8900.	3.3	118
12	Applications of NMR to structure determination of RNAs large and small. Archives of Biochemistry and Biophysics, 2017, 628, 42-56.	1.4	98
13	Decrypting noncoding RNA interactions, structures, and functional networks. Genome Research, 2019, 29, 1377-1388.	2.4	93
14	RNAâ^'Protein Intermolecular Recognition. Accounts of Chemical Research, 1997, 30, 189-195.	7.6	88
15	Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition. Nucleic Acids Research, 1997, 25, 2083-2090.	6.5	78
16	Structure of the Polyadenylation Regulatory Element of the Human U1A Pre-mRNA 3â€~-Untranslated Region and Interaction with the U1A Protein. Biochemistry, 1996, 35, 2253-2267.	1.2	77
17	The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling. Gastroenterology, 2020, 159, 2146-2162.e33.	0.6	75
18	Structure based approaches for targeting non-coding RNAs with small molecules. Current Opinion in Structural Biology, 2015, 30, 79-88.	2.6	73

GABRIELE VARANI

#	Article	IF	CITATIONS
19	Development of Small Molecules with a Noncanonical Binding Mode to HIV-1 Trans Activation Response (TAR) RNA. Journal of Medicinal Chemistry, 2016, 59, 11148-11160.	2.9	72
20	Simple yet functional phosphate-loop proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11943-E11950.	3.3	70
21	Refinement of the structure of protein-RNA complexes by residual dipolar coupling analysis. Journal of Biomolecular NMR, 1999, 14, 149-155.	1.6	69
22	Designed α-sheet peptides inhibit amyloid formation by targeting toxic oligomers. ELife, 2014, 3, e01681.	2.8	67
23	Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15731-15739.	3.3	58
24	A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS Chemical Biology, 2017, 12, 1611-1620.	1.6	57
25	Structure of a low-population binding intermediate in protein-RNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7171-7176.	3.3	54
26	Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by <i>Neisseria meningitidis</i> . Nucleic Acids Research, 2016, 44, gkw584.	6.5	40
27	Rtr1 Is a Dual Specificity Phosphatase That Dephosphorylates Tyr1 and Ser5 on the RNA Polymerase II CTD. Journal of Molecular Biology, 2014, 426, 2970-2981.	2.0	39
28	Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nature Chemical Biology, 2016, 12, 717-723.	3.9	37
29	An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb. Nucleic Acids Research, 2019, 47, 1523-1531.	6.5	37
30	Novel three-dimensional 1H?13C?31P triple resonance experiments for sequential backbone correlations in nucleic acids. Journal of Biomolecular NMR, 1995, 5, 315-20.	1.6	33
31	Targeting Influenza A Virus RNA Promoter. Chemical Biology and Drug Design, 2015, 86, 663-673.	1.5	30
32	Determination of sugar conformation in large RNA oligonucleotides from analysis of dipole-dipole cross correlated relaxation by solution NMR spectroscopy. Journal of Biomolecular NMR, 1999, 15, 241-250.	1.6	28
33	A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nature Communications, 2017, 8, 15622.	5.8	26
34	Determination of the NMR structure of the complex between U1A protein and its RNA polyadenylation inhibition element. Journal of Biomolecular NMR, 1998, 11, 59-84.	1.6	25
35	Multivalent Drug Design and Inhibition of Cholera Toxin by Specific and Transient Protein–Ligand Interactions. Chemical Biology and Drug Design, 2008, 71, 408-419.	1.5	25
36	Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3944-E3953.	3.3	24

GABRIELE VARANI

#	Article	IF	CITATIONS
37	Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics, 2019, 213, 1093-1110.	1.2	24
38	Determination of the structure of the RNA complex of a double-stranded RNA-binding domain fromDrosophila Staufen protein. Biopolymers, 1999, 52, 181-196.	1.2	22
39	The C terminus of Pcf11 forms a novel zinc-finger structure that plays an essential role in mRNA 3′-end processing. Rna, 2017, 23, 98-107.	1.6	19
40	Structure of the RNA Specialized Translation Initiation Element that Recruits elF3 to the 5′-UTR of c-Jun. Journal of Molecular Biology, 2020, 432, 1841-1855.	2.0	16
41	Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathogens, 2021, 17, e1009992.	2.1	15
42	Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study. PLoS Computational Biology, 2018, 14, e1006642.	1.5	14
43	An evolutionarily conserved RNA structure in the functional core of the lincRNA Cyrano. Rna, 2020, 26, 1234-1246.	1.6	13
44	Ultraslow Domain Motions in HIV-1 TAR RNA Revealed by Solid-State Deuterium NMR. Journal of Physical Chemistry B, 2017, 121, 110-117.	1.2	12
45	NMR structure of Dengue West Nile viruses stem-loop B: A key cis-acting element for flavivirus replication. Biochemical and Biophysical Research Communications, 2020, 531, 522-527.	1.0	12
46	Design of RNA-targeting macrocyclic peptides. Methods in Enzymology, 2019, 623, 339-372.	0.4	10
47	Efficient NMR Screening Approach to Discover Small Molecule Fragments Binding Structured RNA. ACS Medicinal Chemistry Letters, 2021, 12, 1253-1260.	1.3	9
48	Structure of the dengue virus RNA promoter. Rna, 2022, 28, 1210-1223.	1.6	7
49	Twenty years of RNA: the discovery of microRNAs. Rna, 2015, 21, 751-752.	1.6	6
50	An Allosteric Switch Primes Sequence-Specific DNA Recognition. Cell, 2019, 176, 4-6.	13.5	6
51	A Small Cyclic βâ€Hairpin Peptide Mimics the Rbfox2 RNA Recognition Motif and Binds to the Precursor miRNA 20b. ChemBioChem, 2019, 20, 931-939.	1.3	6
52	Comparative structure, dynamics and evolution of acyl-carrier proteins from <i>Borrelia burgdorferi</i> , <i>Brucella melitensis</i> and <i>Rickettsia prowazekii</i> . Biochemical Journal, 2020, 477, 491-508.	1.7	5
53	Determination of the structure of the RNA complex of a double-stranded RNA-binding domain from Drosophila Staufen protein. , 1999, 52, 181.		1
54	Determination of the structure of the RNA complex of a double-stranded RNA-binding domain from Drosophila Staufen protein. , 1999, 52, 181.		1

#	Article	IF	CITATIONS
55	Structure of a hepatitis C virus IRES RNA motif recognized by translation initiation factor 3. Biochemical Society Transactions, 2002, 30, A18-A18.	1.6	0